Миоциты — Википедия (с комментариями)

Ты - не раб!
Закрытый образовательный курс для детей элиты: "Истинное обустройство мира".
http://noslave.org

Материал из Википедии — свободной энциклопедии

Миоци́ты, или Мы́шечные клетки — особый тип клеток, составляющий основную часть мышечной ткани. Миоциты представляют собой длинные, вытянутые клетки, развивающиеся из клеток-предшественников — миобластов[1]. Существует несколько типов миоцитов: миоциты сердечной мышцы (кардиомиоциты), скелетной и гладкой мускулатуры. Каждый из этих типов обладает особыми свойствами. Например, кардиомиоциты, помимо прочего, генерируют электрические импульсы, задающие сердечный ритм.

Терминология

В связи с крайне необычным строением мышечной клетки для её описания цитологами была создана специальная терминология. Каждому из особых терминов, относящихся к мышечной клетке, соответствует аналог, использующийся для описания обычных клеток.

Напишите отзыв о статье "Миоциты"

Примечания

  1. MeSH [//www.nlm.nih.gov/cgi/mesh/2009/MB_cgi?mode=&term=Myocytes Myocytes]

Отрывок, характеризующий Миоциты

– И ты здравствуй, Светлая, – улыбнулась девушка.
– Почему вы так меня называете? – очень удивилась я.
– Не знаю, – ласково ответила незнакомка, – просто тебе это подходит!.. Я – Изольда. А как же тебя по правде зовут?
– Светлана, – немного смутившись ответила я.
– Ну вот, видишь – угадала! А что ты здесь делаешь, Светлана? И кто твоя милая подруга?
– Мы просто гуляем... Это Стелла, она мой друг. А вы, какая Изольда – та, у которой был Тристан? – уже расхрабрившись, спросила я.
У девушки глаза стали круглыми от удивления. Она, видимо никак не ожидала, что в этом мире её кто-то знал...
– Откуда ты это знаешь, девочка?.. – тихо прошептала она.
– Я книжку про вас читала, мне она так понравилась!.. – восторженно воскликнула я. – Вы так любили друг друга, а потом вы погибли... Мне было так жаль!.. А где же Тристан? Разве он больше не с вами?
– Нет, милая, он далеко... Я его так долго искала!.. А когда, наконец, нашла, то оказалось, что мы и здесь не можем быть вместе. Я не могу к нему пойти... – печально ответила Изольда.
И мне вдруг пришло простое видение – он был на нижнем астрале, видимо за какие-то свои «грехи». И она, конечно же, могла к нему пойти, просто, вероятнее всего, не знала, как, или не верила что сможет.

o-ili-v.ru

Гладкие мышечные клетки

Гладкие миоциты располагаются без заметных межклеточных пространств и разделены базальной мембраной. На отдельных участках в ней образуются «окна», поэтому плазмолеммы соседних миоцитов сближаются. Здесь формируются нексусы, и между клетками возникают не только механические, но и метаболические связи. Поверх «чехликов» из базальной мембраны между миоцитами проходят эластические и ретикулярные волокна, объединяющие клетки в единый тканевой комплекс. Ретикулярные волокна проникают в щели на концах миоцитов, закрепляются там и передают усилие сокращения клетки всему их объединению.


Гладкие мышцы в пищеварительном тракте. Фото: Brittany

Различают три группы гладких (неисчерченных) мышечных тканей (textus muscularis nonstriatus): мезенхимные, эпидермальные и нейральные.

Мышечная ткань мезенхимного происхождения

Гистогенез. Стволовые клетки и клетки-предшественники в гладкой мышечной ткани на этапах эмбрионального развития пока точно не отождествлены. По-видимому, они родственны механоцитам тканей внутренней среды. Вероятно, в мезенхиме они мигрируют к местам закладки органов, будучи уже детерминированными. Дифференцируясь, они синтезируют компоненты матрикса и коллагена базальной мембраны, а также эластина. У дефинитивных клеток (миоцитов) синтетическая способность снижена, но не исчезает полностью.
Строение клеток. Гладкий миоцит — веретеновидная клетка длиной 20 – 500 мкм, шириной 5 – 8 мкм.

Ядро палочковидное, находится в ее центральной части. Когда миоцит сокращается, его ядро изгибается и даже закручивается. Органеллы общего значения, среди которых много митохондрий, сосредоточены около полюсов ядра (в эндоплазме). Аппарат Гольджи и гранулярная эндоплазматическая сеть развиты слабо, что свидетельствует о малой активности синтетических функций. Рибосомы в большинстве своем расположены свободно.

Мышечная ткань мезенхимного типа в составе органов. Миоциты объединяются в пучки, между которыми располагаются тонкие прослойки соединительной ткани. В эти прослойки вплетаются ретикулярные и эластические волокна, окружающие миоциты. В прослойках проходят кровеносные сосуды и нервные волокна. Терминали последних оканчиваются не непосредственно на миоцитах, а между ними. Поэтому после поступления нервного импульса медиатор распространяется диффузно, возбуждая сразу многие клетки.
Гладкая мышечная ткань мезенхимного происхождения представлена главным образом в стенках кровеносных сосудов и многих трубчатых внутренних органов, а также образует отдельные мелкие мышцы (цилиарные).

Гладкая мышечная ткань в составе конкретных органов имеет неодинаковые функциональные свойства. Это обусловлено тем, что на поверхности органов имеются разные рецепторы к конкретным биологически активным веществам. Поэтому и на многие лекарственные препараты их реакция неодинакова. Возможно, разные функциональные свойства тканей связаны и с конкретной молекулярной организацией актиновых филаментов.

Мышечная ткань эпидермального происхождения

Миоэпителиальные клетки развиваются из эпидермального зачатка. Они встречаются в потовых, молочных, слюнных и слезных железах и имеют общих предшественников с их секреторными клетками. Миоэпителиальные клетки непосредственно прилежат к собственно эпителиальным и имеют общую с ними базальную мембрану. При регенерации те и другие клетки тоже восстанавливаются из общих малодифференцированных предшественников.

Большинство миоэпителиальных клеток имеют звездчатую форму. Эти клетки нередко называют корзинчатыми: их отростки охватывают концевые отделы и мелкие протоки желез. В теле клетки располагаются ядро и органеллы общего значения, а в отростках — сократительный аппарат, организованный, как и в клетках мышечной ткани мезенхимного типа.
Мышечная ткань нейрального происхождения

Миоциты этой ткани развиваются из клеток нейрального зачатка в составе внутренней стенки глазного бокала. Тела этих клеток располагаются в эпителии задней поверхности радужки. Каждая из них имеет отросток, который направляется в толщу радужки и ложится параллельно ее поверхности. В отростке находится сократительный аппарат, организованный так же, как и во всех гладких миоцитах. В зависимости от направления отростков (перпендикулярно или параллельно краю зрачка) миоциты образуют две мышцы: суживающую и расширяющую зрачок.



biofile.ru

SCVP Endomyocardial Biopsy Tutorial

Малое увеличение

В этом разделе обсуждаются гистологические находки при малом увеличени (2x до 10x). Он будет охватывать такие темы, как наблюдение за клеточной структурой, сосудами и соединительной тканью.

Адекватность Биопсии

Первым шагом для оценки биопсии на малом увеличении является оценка адекватного количества ткани миокарда. Так как многие пациенты при пересадке сердца проходят несколько биопсий, часть или все части биопсии могут состоять из изменений на месте предыдущей биопсии. Если виден тромб, грануляционная ткань, или участки фиброза с миоцитарними изменениями, то вероятнее всего вы находитесь на предыдущем участке биопсии. Для адекватности, по крайней мере 3 участка биопсии должны присутствовать, каждый из которых по крайней мере 50% от площади, занимаемым миокардом не изменным предидущей биопсией. Присутствие других тканей (створок клапана,хорда tendinea, жировой ткани, и др.) также должны быть отмечены.

Общая оценка биопсии
 

После определения адекватности биопсии, основной целью малого увеличения является: 1)есть или нет увеличения клеток в ткани биопсии, 2) определить место и характер клеточного инфильтрата, 3) получить общее ощущение локализации и характера воспалительного инфильтрата и 4) определение конкретных областей увеличения клеточного инфильтрата, чтобы просмотреть при большом увеличении. Гистологические изменения острого клеточного отторжения не однородны, и малое увеличение позволяет патологу, сосредоточиться на наиболее поврежденной области. Экспертиза ткани на нескольких уровнях имеет важнейшее значение для диагностической точности.

Увеличение клеточного инфильтрата в эндомиокардиальной биопсии легко выявляется в большинстве случаев. Картина распределения клеточного инфильтрата может быть либо очаговой или диффузной. На малом увеличении, как правило, можно определить, если воспаление периваскулярное или между миоцитов (perimyocytic) напоминая узор проволочной сетки. Иногда это различие, как и многие другие морфологические признаки, является субъективным.

По расположению инфильтратов, и их связи с миоцитами, можно предположить, различные патологические процесы. Лимфоцитарный инфильтрат при остром клеточном отторжении (ACR) находится вокруг кардиомиоцитов (perimyocytic) или вокруг мелких артериол (периваскулярные). Если инфильтрат располагается преимущественно в ткани эндокарда или фиброзной ткани, альтернативные этиологии, такие как ишемия, Quilty инфильтраты или изменения на месте предыдущий биопсии должны быть рассмотрены. Лимфоцитарный инфильтрат в ткани эндокарда может также находиться на поверхности или вблизи поверхности эндокарда в линейном порядке. Это может быть трудно отличить от Quilty эффекта и, как правило,эти изменения следуют в связи с perimyocyte инфильтратом при более высоком уровне отторжения.

Большие, узловые, агрегаты лимфоцитов в ткани эндокарда, очень характерны для "Quilty" эффекта. Для Quilty поражений в миокарде или в миокарде и эндокарде, харатерным признаком является множественный лимфоцитарный инфильтрат с расширением границ и сравнительно резкой границей с придлежащими миоцитами. Наличие этих признаков должно предложить правильную интерпретацию при низком увеличении. Весь лимфоцитарный инфильтрат должен быть оценен при большем увеличении на наличие миоцитов повреждения.

Миоциты
 

Выявление "миоцитов повреждения" иногда является сложной задачей при обследовании EMB."Повреждение" охватывает широкий спектр изменений варьрирующий от гибели клеток на одной стороне и тонкие дегенеративные изменения на другой. Большинство этих изменений должны быть видимы при большом увеличени для точного диагноза.

Косвенные доказательства миоцитрного повреждения, видемые на малом увеличени включают в себя наложения воспалительных клеток на миоциты . Инфильтрация воспалительными клетками вызывает неравномерность миоцитарных границ и искажению нормальной архитектуры миокарда. На практике, воспалительные клеток внутри или рядом с миоцитами очень удобно испрользовать как биомаркеры, которые требуют более тщательного изучения. С осторожностью следует использовать любую попытку оценить лимфоциты по отношению к миоцитам в области артефактов из за работы биотомом.

Иногда ишемическое повреждение (периоперационной ишемии или после в связи с васкулопатии аллотрансплантата) индуцирует очаги некроза кардиомиоцитов. Малые очаги с участием нескольких миоцитов могут быть не отличимы от ACR при малом увеличении. Большие очаги могут быть легко подтверждаться коагуляционным некрозом , как правило, с миоцитами лишенными ядра и переменной степенью резорбции. Независимо от размера, ишемические очаги часто сопровождаются макрофагоми и небольшим количеством лимфоцитов и нейтрофилов. В некоторых случаях эти участки могут быть резко разграничены и разными по форме. Некротические миоциты могут быть выделены трехцветным окрашиванием который окрасит эти миоциты в ярко красный цвет.

Вакуолизированные миоциты могут являться результатом хронической ишемии. Нередко, наблюдаются артефакты, особенно когда миоциты находятся в поперечном сечении, все это может имитировать myocytolysis. Тщательная оценка на малом увеличении помогает заметить картину "шахматной доски". Миоциты чередующиеся с сократительными элементами,участками просветления, литическими областями. Все это должны вызывать тревогу и предположительный диагноз хронической ишемии.

Интерстиций
 

Кроме увеличения интерстициального инфильтрата (см. выше), изменения видимые на малом увеличении, которые можно наблюдать в интерстиции миокарда в основном отек и фиброз. Отек наблюдается при тяжелом ACR (класс 3R), сердечной недостаточности и/или поврежденной сосудистой сетке в результате повреждения антителами. Интерстиций имеет бледно-базофильный, слегка пузырчатый вид, наилучшее всего видный, в периваскулярных и/или перимиоцитарных пространствах. Эти находки должны быть сопоставлены с оценкой на большом увеличении микрососудов на наличие признаков антител опосредованных реакций оторжения. Отек не следует путать с артефактом, вызванным особеностями приготовления биопсии . Это могут быть маленькие или большие пространства между миоцитами без каких-либо признаков видимых при настоящем отеке.

Увеличение интерстициального фиброза чаще всего в форме широких областей отсутствия миоцитов с заменой на фиброзную ткань. Эти поражения, как правило, связаны с предыдущей биопсией и видны в непосредственной близости от места биопсии . Особенности изменений ткани на месте биопси обсуждаются в другом учебнике. Рубцы, связанные с хронической ишемией миокарда могут быть трудно отличить от просто области предыдущей биопсии. Наблюдение на малом увеличении рубцов "звездчатых форм" должны вызывать последующую оценку на большом увеличении мощности для выявления дополнительных признаков хронической ишемии. Независимо от наличия этих признаков, интерстициальный фиброз не является особенностью ACR.

Наличие сосудов

 

Свидетельство наличия сердечной васкулопатии аллотрансплантата редко можно заметить на EMB и оно может быть легко спутано с артефактами . строения кровеносных сосудов. Большие сосуды, особенно в сочетании с жировой или нервной тканью должны оцениваться на большом увеличении для выявленя перфорации. Патологические изменения в сосудистой системе лучше всего оценивается при большом увеличении.

  • Вперед, к высокому увеличению.
  • Обратно к классификации.
  • Общество Сердечно-Сосудистой патологии и его инернет страница, не оказывает медицинских советов или рекомендаций. Вы не должны заменить консультации с квалифицированными специалистами какой либо информацией из наших статей.

    scvp.net

    Строение миосимпласта

    Миосимпласт представляет собой совокупность слившихся клеток. В нем имеется большое количество ядер, расположенных по периферии мышечного волокна (их число может достигать десятков тысяч). Как и ядра, на периферии симпласта расположены другие органеллы, необходимые для работы мышечной клетки — эндоплазматическая сеть (саркоплазматический ретикулюм), митохондрии и др. Центральную часть симпласта занимают миофибриллы. Структурная единица миофибриллы — саркомер. Он состоит из молекул актина и миозина, именно их взаимодействие и обеспечивает изменение длины мышечного волокна и как следствие сокращение мышцы. В состав саркомера входят также многие вспомогательные белки — титин, тропонин, тропомиозин и др.

    Строение миосателлитов

    Миосателлиты — одноядерные клетки, прилежащие к поверхности миосимпласта. Эти клетки отличаются низкой дифференцировкой и служат взрослыми стволовыми клетками мышечной ткани. В случае повреждения волокна или длительном увеличении нагрузки клетки начинают делиться, обеспечивая рост миосимпласта.

    Гладкая мышечная ткань

    Это ткань энтомезенхимного происхождения, которая делится на два вида: висцеральную и сосудистую. В эмбриональном гистогенезе даже электронно-микроскопически трудно отличить мезенхимные предшественники фибробластов от гладких миоцитов. В малодифференцированных гладких миоцитах развиты гранулярная эндоплазматическая сеть, комплекс Гольджи. Тонкие филаменты ориентированы вдоль длинной оси клетки. По мере развития размеры клетки и число филаментов в цитоплазме возрастают. Постепенно объем цитоплазмы, занятый сократительными филаментами, увеличивается, расположение их становится все более упорядоченным. Пролиферативная активность гладких миоцитов в миогенезе постепенно снижается. Это происходит в результате увеличения продолжительности клеточного цикла, выхода клеток из цикла репродукции и перехода в дифференцированное состояние. Однако и в дефинитивном состоянии в гладкой мышечной ткани клеточная регенерация в виде размножения миоцитов полностью не прекращается. Существуют данные о том, что пролиферация и дифференцировка в большей степени свойственна субпопуляции малых (по размерам) гладких миоцитов.

    Строение гладкой мышечной ткани.

    Структура дефинитивных гладких миоцитов (лейомиоцитов), входящих в состав внутренних органов и стенки сосудов, имеет много общего, но в то же время характеризуется гетероморфией. Так, в стенках вен и артерий обнаруживаются овоидные, веретеновидные, отростчатые миоциты длиной 10-40 мкм, доходящие иногда до 140 мкм.

    Наибольшей длины гладкие миоциты достигают в стенке матки — до 500 мкм. Диаметр миоцитов колеблется от 2 до 20 мкм. В зависимости от характера внутриклеточных биосинтетических процессов различают контрактилъные и секреторные миоциты. Первые специализированы на функции сокращения, но вместе с тем сохраняют секреторную активность. Плазмолемма расслабленной клетки имеет ровную поверхность, а при сокращении становится складчатой. В центре клетки имеется палочковидное ядро, которое при сокращении клетки спиралевидно изгибается. Практически все ядра миоцитов содержат диплоидное количество ДНК. Гладкая эндоплазматическая сеть занимает примерно 2-7% объема цитоплазмы, а гранулярная сеть в контрактильных миоцитах выражена плохо. Митохондрии мелкие, сферические или овоидные, расположены у полюсов ядра. Характерной чертой гладких миоцитов является наличие множества впячиваний (кавеол) плазмолеммы, содержащих ионы кальция.

    Секреторные миоциты (синтетические) по своей ультраструктуре напоминают фибробласты, однако содержат в цитоплазме пучки тонких миофиламентов, расположенные на периферии клетки. В цитоплазме хорошо развиты комплекс Гольджи, гранулярная эндоплазматическая сеть, много митохондрий, гранул гликогена, свободных рибосом и полисом. По степени зрелости такие клетки относят к малодифференцированным.

    Сократительный аппарат миоцитов представлен тонкими актиновыми филамен-тами (гладкомышечным альфа-актином), связанными с тропомиозином. Толстые нити состоят из миозина, мономеры которого располагаются вблизи филаментов актина. Соотношение актиновых и миозиновых филаментов в гладком миоците составляет 12 к 1. Важным компонентом контрактильного аппарата миоцитов являются электронно-плотные структуры — тельца прикрепления, расположенные свободно в цитоплазме (плотные тельца) или тесно связанные с плазмолеммой. Основными белковыми компонентами плотных телец являются альфа-актинин, актин (немышечный) и кальпонин, что позволяет расссматривать их как функциональный эквивалент Z-линий миофибрилл скелетной мышцы. Актиновые филаменты фиксируются на плотных тельцах. Промежуточные филаменты, включающие десмин и виментин, обеспечивают связи между плотными тельцами и плазмолеммой, образуя прикрепительные пластины.

    Сократительные белки формируют решетчатую структуру, закрепленную по окружности плазмолеммы, поэтому сокращение выражается в укорочении клетки, которая приобретает складчатую форму, тогда как в состоянии покоя клетка вытянута. При возникновении нервного импульса, распространяющегося по плазмолемме миоцита, происходит повышение уровня внутриклеточного Са2+, который поступает в цитоплазму из кавеол, отшнуровывающихся в цитоплазму в виде пузырьков. Высвобождение ионов кальция приводит к каскаду реакций, в результате которого происходит полимеризация миозина и образование перекрестных связей миозина вдоль актиновых филаментов по мере развития мышечного сокращения. Расслабление мышцы возникает при восстановлении концентрации исходного уровня Са2+ внутри клетки путем его перемещения внутрь саркоплазматической сети. При этом образовавшиеся в присутствии ионов кальция связи между актином и миозином нарушаются, акто-миозиновый комплекс распадается, гладкий миоцит расслабляется.

    Гладкие миоциты синтезируют протеогликаны, гликопротеиды, проколлаген, проэластин, из которых формируются коллагеновые и эластические волокна и основное вещество межклеточного матрикса. Взаимодействие миоцитов осуществляется с помощью цитоплазматических мостиков, взаимных впячиваний, нексусов, десмосом или простых участков мембранных контактов клеточных поверхностей.

    studfiles.net

    Сердечные миоциты проводящей системы сердца

    Миоциты проводящей системы сердца (рис. 7). К проводящей системе сердца (systema conducens cardiacum) относятся мышечные клетки, формирующие и проводящие импульсы к сократительным клеткам сердца. В состав проводящей системы входят синусно-предсердный и предсердно-желудочковый узлы, предсердно-желудочковый пучок (пучок Гиса), его ножки и концевые разветвления ножек, образованные клетками Пуркинье. В сердце человека клетки проводящей системы сильно отличаются по размерам и структуре от рабочих миоцитов. Различают три типа мышечных клеток, которые в разных соотношениях находятся в соответствующих отделах данной системы.

    Рис. 7.Кардиомиоциты проводящей системы сердца

    I - схема расположения элементов проводящей системы сердца; II - кардиомиоциты синусного и атриовентрикулярного узлов: а - Р-клетки, б - переходные клетки; III - кардиомиоцит из пучка Гиса (волокна Пуркинье): 1 - ядра; 2 - миофибриллы; 3 - митохондрии; 4 - саркоплазма; 5 - глыбки гликогена; 6 - промежуточные филаменты; 7 - миофиламентные комплексы.

    Синусно-предсердный (синусный) узел содержит водители ритма, или пейсмекерные (ведущие) клетки (pacemaker cells - Р-клетки), занимающие центральную часть узла и способные к самопроизвольным сокращениям. Данные клетки располагаются гранулами, бедны миофибриллами и митохондриями, почти лишены предсердных гранул и имеют светлую цитоплазму. Упаковка миофиламентов в составе миофибрилл рыхлая, при этом миофибриллы могут ветвиться и изгибаться. Линии Z имеют неправильную конфигурацию. Пейсмекерным клеткам свойственна медленная диастологическая деполяризация. Данные клетки генерируют потенциал движения и при этом в проводящей системе преобладает анаэробный гликолиз, а в саркоплазме много гликогена.

    Другим типом клеток синусного узла, находящегося по его периферии, является переходный, или латентный тип. В таких клетках больше миофибрилл и нексусов, а в некоторых из них есть Т-каналы. Данные клетки проводят импульс из синусного узла к другим клеткам предсердия, а именно от Р-клеток к клеткам предсердно-желудочкового пучка и рабочему миокарду.

    Предсердно-желудочковый узел имеет клетки, схожие с миоцитами синусного узла. Оба узла сильно иннервированы с преобладание адренергических терминалей. Каждый миоцит имеет и афферентную, и эфферентную иннервации.

    Предсердно-желудочковый пучок (пучок Гиса) представляет прямое продолжение предсердно-желудочкового узла и покрыт «чехлом» из плотной соединительной ткани. Ножки пучка разветвляются под эндокардом, а также по толщине миокарда желудочков и проникают в сосочковые мышцы.

    Клетки пучка Гиса, названные клетками Пуркинье, неявно отличаются от рабочих миоцитов желудочков. Клетки Пуркинье - самые крупные клетки не только в проводящей системе, но и во всем миокарде, поэтому они крупнее рабочих миоцитов, а миофибриллы в них тонкие, малочисленные и расположены в основном по периферии клеток. В их цитоплазме много гликогена в виде агрегатов с белками - гликосом, содержащих десмогликоген, который резистентен к кислотам, щелочам, амилазе и нерастворим в воде. В клетках Пуркинье много промежуточных филаментов, при этом почти полностью отсутствуют Т-каналы. Клетки Пуркинье в совокупности образуют предсердно-желудочковый ствол и ножки пучка, концевые разветвления которого называются волокнами Пуркинье.

    В проводящей системе сердца преобладают энзимы, принимающие участие в анаэробном гликолизе (фосфорилаза, дегидрогеназа молочной кислоты). В проводящих волокнах уровень калия ниже, а кальция и натрия выше в сравнении с сократительными кардиомиоцитами.

    Строение наружной оболочки сердца эпикарда и перикарда

    Наружная оболочка сердца, или эпикард (epicardium), представляет висцеральный листок перикарда (pericardium). Эпикард образован тонкой пластинкой соединительной ткани, плотно срастающейся с миокардом. Свободная поверхность ее покрыта мезотелием. В основе эпикарда различают поверхностный слой коллагеновых волокон, слой эластических волокон, глубокий слой коллагеновых волокон и глубокий коллагеново-эластический слой, составляющей до 50% всей толщины эпикарда.

    В перикарде соединительнотканная основа развита сильнее, чем в эпикарде. Здесь много эластических волокон, особенно в глубоком его слое. Поверхность перикарда, обращенная к перикардиальной полости, также покрыта мезотелием. Эпикард и париетальный листок перикарда имеют многочисленные нервные окончания в основном свободного типа.

    Васкуляризация сердца

    Сосуды - ветви коронарных артерий - проходят в прослойках соединительной ткани между пучками кардиомиоцитов, распределяясь на капиллярную сеть, в которой каждому миоциту соответствует не менее одного капилляра.

    Венечные (коронарные) артерии имеют плотный эластический каркас, в котором выделяются внутренняя и наружная эластические мембраны. Гладкие мышечные клетки в артериях обнаруживаются в виде продольных пучков во внутренней и наружной оболочках.

    В основании клапанов сердца кровеносные сосуды в месте прикрепления створок разветвляются на капилляры, откуда кровь собирается в коронарные вены, впадающие в правое предсердие или венозный синус. В эпикарде и перикарде также находятся сплетения сосудов микроциркуляторного русла. Проводящая система сердца, особенно ее узлы, обильно снабжена кровеносными сосудами.

    Кровоснабжение сердечной мышечной ткани чрезвычайно обильно: по уровню кровоснабжения (мл/мин/100г массы) миокард уступает только почке и превышает другие органы, включая головной мозг. В частности, этот показатель для сердечной мышцы в 20 раз выше, чем для скелетной.

    Лимфатические сосуды в эпикарде сопровождают кровеносные. В миокарде и эндокарде они проходят самостоятельно и образуют густые сети. Лимфатические капилляры обнаружены также в атриовентрикулярных и аортальных клапанах. Из капилляров лимфа, оттекающая от сердца, направляется в парааортальные и парабронхиальные лимфатические узлы.

    Иннервация сердца

    В стенке сердца обнаруживается несколько нервных сплетений и ганглиев. Наибольшая плотность расположения нервных сплетений наблюдается в стенке правого предсердия и синусно-предсердного узла проводящей системы.

    Рецепторные окончания в стенке сердца образованы нейронами ганглиев блуждающих нервов и нейронами спинномозговых узлов, а также ветвлениями дендритов равноотростчатых нейроцитов внутриорганных ганглиев (афферентные нейроны).

    Эффекторная часть рефлекторной дуги в стенке сердца представлена расположенными среди кардиомиоцитов и по ходу сосудов органа нервными волокнами, образованными аксонами находящихся в сердечных ганглиях длинноаксонных нейроцитов (эфферентные нейроны), которые получают импульсы по преганглиолярным волокнам из нейронов ядер продолговатого мозга, приходящих сюда в составе блуждающего нерва. Эффекторные адренергические нервные волокна образованы ветвлениями аксонов нейронов ганглиев симпатической нервной цепочки, на которых синапсами заканчиваются преганглионарные волокна - аксоны нейронов симпатических ядер боковых рогов спинного мозга.

    Пресинаптический аппарат в кардиомиоцитах синапсов характеризуется тем, что практически не удается выделить в миокардиоцитах локальные постсинаптические структуры, так как эффекторные влияния имеют модулирующий характер.

    Электротоническое влияния в миокардиальной ткани распространяются далеко за пределы одной клетки, и как следствие, обнаружение высокого коэффициента передачи между кардиомиоцитами, что обусловлено наличием электрических синапсов (щелевых контактов) между клетками. При этом автоматизм сокращения связан с передачей импульса через указанные контакты.

    В миокарде много афферентных и эфферентных нервных волокон. Раздражение нервных волокон, окружающих проводящую систему, а также нервов, подходящих к сердцу, вызывает изменение ритма сердечных сокращений. Это указывает на определяющую роль нервной системы в ритме сердечной деятельности, следовательно, и в передаче импульсов по проводящей системе сердца.


    

    infopedia.su

    Общая характеристика мышц. Строение мышечных клеток

    Учение о мышцах – это важнейший раздел биохимии, имеющий исключительное значение для спортивной биохимии.

    Важнейшей особенностью функционирования мышц является то, что в процессе мышечного сокращения происходит непосредственное превращение химической энергии АТФ в механическую энергию сокращения мышц. Это явление не имеет аналогов в технике и присуще только живым организмам. У животных и человека два основных типа мышц: поперечнополосатые и гладкие, причем поперечнополосатые мышцы делятся на два вида – скелетные и сердечные. Гладкие мышцы характерны для внутренних органов, кровеносных сосудов.

    Поперечнополосатые мышцы состоят из тысяч мышечных клеток – волокон. Волокна объединены соединительно-тканными прослойками и такой же оболочкой – фасцией. Мышечные волокна – миоциты - представляют собой сильно вытянутые многоядерные клетки гигантских размеров от 0,1 до 10см длиной и толщиной около 0,1 – 0,2 мм.

    Миоцит состоит из всех обязательных компонентов клетки. Особенностью мышечного волокна является то, что внутри эта клетка содержит большое количество сократительных элементов - миофибрилл. Как и другие клетки тела миоциты содержат ядро, причем, у клеток поперечнополосатых мышц ядер несколько, рибосомы, митохондрии, лизосомы, цитоплазматическую сеть.

    Цитоплазматическая сеть называется в этих клетках саркоплазматической сетью. Она связана с помощью особых трубочек, называемых Т-трубочками, с клеточной мембранной – сарколеммой. Особо следует выделить в саркоплазматической сети пузырьки, называемые цистернами. Они содержат большое количество ионов кальция. С помощью специального фермента кальций накачивается в цистерны. Этот механизм называется кальциевым насосом и необходим для сокращения мышцы.

    Цитоплазма или саркоплазма миоцитов содержит большое количество белков. Здесь немало активных ферментов, среди которых важнейшими являются ферменты гликолиза, креатинкиназа. Немалое значение имеет белок миоглобин, сохраняющий кислород в мышцах.

    Кроме белков в цитоплазме мышечных клеток содержатся фосфогены – АТФ, АДФ, АМФ, а также креатинфосфат, необходимые для нормального снабжения мышцы энергией.

    Основной углевод мышечной ткани – гликоген. Его концентрация достигает 3%. Свободная глюкоза в саркоплазме встречается в малых концентрациях. В тренируемых на выносливость мышцах накапливается запасной жир.
    Снаружи сарколемма окружена нитями белка – коллагена. Мышечное волокно растягивается и возвращается в исходное состояние за счет упругих сил, возникающих в коллагеновой оболочке.

    fizcult.by

    Гладкая мышечная ткань: строение, функции :: SYL.ru

    Мышечная ткань (латинское название - textus muscularis) образует мускулы, которые обеспечивают двигательные функции живого организма. Эти образования различны по формам и свойствам. Строение мышечной ткани клеточное. Мускулы - комплексы вытянутых эластичных элементов, способных реагировать на импульсы, посылаемые нервной системой. Раздражающие сигналы, поступающие от ЦНС, заставляют мышечную ткань сокращаться и приводить в движение опорно-двигательный аппарат человека. Строение мышечной ткани позволяет организму делать запасы энергии, а затем использовать их для самостоятельного передвижения в течение длительного времени. Гладкая мускулатура, как и остальные резиденты организма получает комплексное питание, состоящее из полезных веществ и кислорода, которые доставляются посредством кровотока Это сложный биохимический процесс, ориентированный на укрепление и развитие миоцитов - клеток, лежащих в основе структуры мышечной ткани. Успешное замещение энергетических ресурсов, утраченных в результате активной жизнедеятельности человека, является залогом дальнейшего полноценного функционирования всех органов. Мышечная ткань аккумулирует энергию на непродолжительное время, необходимость ее использования возникает практически ежеминутно.

    Миоциты

    Основные двигательные функции организма возложены природой на мускульные образования, название которых "гладкая мышечная ткань". В ее биологическом устройстве преобладают одноядерные клетки веретеновидной формы. Это миоциты - структурная единица гладкой мышечной ткани. Длина их колеблется от 15 до 500 мкм, что позволяет мускулам действовать в достаточно широком диапазоне сокращений. Нервная система организма настроена на использование всех возможностей миоцитных структур. Гладкая мышечная ткань функционирует преимущественно в режиме медленных сокращений, благодаря взаимодействию миозина с актином. Расслабление ее происходит также плавно. Вместе с тем гладкая мышечная ткань, функции которой достаточно разнообразны, способна к сокращениям большой силы. Например, при родах мускулатура матки создает сильнейшее напряжение, направленное на выталкивание плода. Сокращения непрерывно следуют одно за другим в течение продолжительного времени, при этом каждая клетка гладкой мышечной ткани матки несет в себе заряд неиссякаемой энергии, в результате чего родовые схватки, в отдельных случаях, продолжаются часами. Процесс запрограмирован природой, как "обязательный к исполнению". При этом гладкая мышечная ткань, функции которой имеют достаточно сложный характер, совершенно не поддается интеллектуальному контролю и подчиняется исключительно импульсам, поступающим от центральной нервной системы. Это обстоятельство создает определенные трудности для врачей и среднего медицинского персонала, которые лишены возможности воздействовать на процесс.

    Рефлекторный автоматизм

    Гладкая мышечная ткань образует стенки многих внутренних органов: желудка, кишечника, крупных кровеносных сосудов. Каждая часть организма, деятельность которой связана с сократительными функциями, содержит то или иное количество мускульных волокон. Сила сокращений мышцы напрямую зависит от ее целевого назначения. Например, гладкая мускулатура спины может резко активизироваться в случае поднятия человеком тяжелого груза, мешка с цементом или доверху набитого ящика с овощами. Произойдет очень мощное сокращение мышечной массы, энергия будет передана на скелет. Причем произойдет это автоматически, без всякого интеллектуального вмешательства самого грузчика.

    Возможности регенерации

    Гладкая мышечная ткань, функции которой достаточно универсальны, выполняет роль связующего звена между отдельными фрагментами организма. Она соединяет их своеобразными эластичными мостами. Целостность структурных образований в теле человека во многом обеспечивается именно мышечными слоями, расположенными повсеместно. Дислокация мускулов отличается рациональностью, логика их присутствия однозначна. В организме человека нет дублирующих органов, за исключением внешних, на которые возложены функции основных чувств, например, это глаза и уши. Природа предусмотрела возможность утраты какой-то части, при этом функция сохраняется за счет дублера. Мышечные образования существуют только в одном экземпляре, при утрате какого-то из них наступает частичная инвалидность. Человеческие мускулы не обладают способностью к регенерации утраченных или поврежденных структур, как это происходит у ящериц и некоторых других земноводных и пресмыкающихся. Нарушенный участок просто отмирает или приходит в состояние малой активности. В некоторых случаях потеря активности мышечной структуры оканчивается гибелью всего организма. Так происходит при утрате активности сердечной мышцы, которая по каким-либо причинам патологического характера теряет способность к фукционированию. В результате возникает кардиологическая недостаточность, несовместимая с жизнью.

    Гладкая и поперечнополосатая мышечные ткани

    В человеческом организме функционируют несколько видов мускульных образований. Поперечно-полосатая мышечная ткань состоит из миоцитов длиной до 4-5 сантиметров. Их диаметр колеблется от 50 до 120 мкм. Ядер в клетках большое количество, 100 и более единиц. Цитоплазма этих миоцитов выглядит под микроскопом как масса, расчерченная перемежающимися темными и светлыми полосками. В отличие от гладкой, поперечно-полосатая мускулатура обладает высокой скоростью сокращения и расслабления, она образует комплекс скелетных мышц, верхнюю часть пищевода, язык и приводит в движение гортань. Волокна поперечно-полосатых мышц достигают длины 10-12 сантиметров.

    Кардиология

    Особое место в организме занимает поперечно-полосатая мышечная ткань, которая состоит из кардиомиоцитов с поперечной исчерченностью цитоплазмы. Клетки имеют разветвленную структуру и образуют специфические соединения - диски вставочные. Существует также другая межклеточная структура - анастомоз, в котором цитолеммы отдельных клеток слипаются. Эта разновидность мышечной ткани является материалом для образования миокарда сердца. Особое свойство такой ткани - способность к ритмическим сокращениям под влиянием возбуждения, возникающего непосредственно в самих клетках. Существует еще один вид кардиомиоцитов - секреторных, отличающихся отсутствием фибрилл. Эти клетки генерируют гормон тропонин, снижающий артериальное давление.

    Гладкие мышцы отличаются от поперечно-полосатых тем, что на их деятельность затрачивается сравнительно небольшое количество калорий и, таким образом, появление синдрома усталости отдаляется. Этот фактор является одним из самых существенных в жизнедеятельности организма. Однако гладкая мышечная ткань, особенности строения которой располагают к экономии энергии, тем не менее обладает способностью активного функционирования за счет одномоментного выброса калорийного заряда. Этого хватает на одно-два сокращения, чего в ряде случаев бывает достаточно. В целом гладкая мускулатура предрасположена к медленным действиям, не связанным с экстремальными ситуациями. В этом случае ее работа стабильна и надежна.

    Структура

    Ядра тканевых клеток - миоцитов имеют палочковидную форму. Их расположение в самом центре родительского образования обусловлено наличием гетерофроматина. При сокращении клетки вытянутое ядро изгибается, а при особо интенсивной реакции на сигнал центральной нервной системы даже закручивается. У ядерных полюсов в этот момент собирается значительное количество митохондрий, которые являются разновидностью органелл, вспомогательных внутриклеточных структур.

    Гладкие мышцы не имеют поперечной структуризации, их клеточная цитоплазма содержит множество различных агентов, в число которых входят: жировые, пигментные, углеводные. Присутствуют также кавеолы и пиноцитозные пузырьки, привлекающие ионы кальция. Цитоплазма гладкомышечных клеток при микроскопическом исследовании открывает миозиновые миофиламенты, толстые и тонкие актиновые, расположенные вдоль длинной клеточной оси. Благодаря межмолекулярному взаимодействию с миозином, филоменты сближаются, процесс передается на цитолему, плазматическую мембрану и только после этого происходит сокращение мышцы.

    Поскольку строение гладкой мышечной ткани клеточное, миоциты представлены в широком ассортименте по всему организму. В матке, эндокарде, мочевом пузыре, аорте и многих других органах они присутствуют в виде отростковых клеток, которые тесно взаимодействуют друг с другом. Процесс воспроизводства новых миоцитов подчиняется логике биохимической регенерации, но вместе с тем он отличается определенной способностью к фильтрации элементов. Таким образом, вновь возникшие миоциты подвергаются отбору, выживают только здоровые. Такая система вполне себя оправдывает, поскольку в этом случае мышечная ткань полноценно обновляется в непрерывном режиме.

    Двигательные функции

    Особенности гладкой мышечной ткани еще и в том, что оболочка каждого миоцита обволакивается базальной мембраной, привлекающей коллагеновые фибриллы. В мембране есть отверстия, через которые клетки контактируют друг с другом. Взаимодействие может быть условным или репродуктивным. Миоциты, кроме того, окружены ретикулярными коллагеновыми волокнами, образующими сеточный эндомизий, связывающий соседние клетки.

    Функциональные возможности организма зависят от того, как работает мускулатура человека, слаженно или спонтанно. Гладкой мышечной тканью образованы целые двигательные комплексы, которые запускаются рефлекторно, посредством одного или двух импульсов, посылаемых центральной нервной системой. Это касается только привычных, часто повторяющихся телодвижений. В других, неординарных проявлениях жизнедеятельности человека мышцы находятся в постоянной готовности к действию. Фактор неожиданности учитывается на уровне психологии, при необходимости происходит резкая активизация деятельности мускулатуры, адекватно ситуации.

    Защитные функции

    Гладкой мышечной тканью образованы также различные схемы противодействия внешним раздражителям. При этом организм справляется с проблемами, наступившими извне, без непосредственного участия интеллекта, только за счет мускульных рефлексов. В этом случае в полной мере используется сократительная функция гладкомышечной массы. После нормализации обстановки наступает ее расслабление.

    Мимика лица

    Человек постоянно находится в окружении так называемого социума, днем он контактирует с коллегами по работе, вечером пребывает в кругу семьи, по выходным дням посещает общественные места. Люди, с которыми индивидуум общается, видят его лицо, отражающее чувства, настроение, радость или печаль, гнев или веселье. Перемены отчетливо видны окружающим. Всеми процессами, меняющими выражение лица, управляют мимические мышцы. Гладкая мышечная ткань, расположенная в передней части головы, обеспечивает полный спектр изменений, касающихся эмоционального состояния человека в определенный отрезок времени.

    От взаимодействия группы мышц, управляющих лицевыми компонентами, зависит не только выражение лица, но и глаз, поскольку гладкая мускулатура приводит в движение глазные яблоки, регулирует диаметр зрачка. Веки также находятся под ее воздействием, микроскопические мышцы присутствуют даже под ресницами, их функция – обеспечить правильное положение волосков. Некоторые группы мышц обладают способностью к автоматическому функционированию. Например, верхние веки периодически закрываются на доли секунды, чтобы потом вернуться в первоначальное положение. Это происходит потому, что глаз нуждается в обновлении слизистой роговицы и всей передней части глазного яблока. Глаза "моргают" с интервалом в 10-15 секунд и эта цикличность задается самой мышечной тканью, в недрах ее волокон возникает импульс, который инициирует моргание. Если на слизистую оболочку глазного яблока попадает инородное тело, даже микроскопических размеров, это становится поводом для частого, интенсивного моргания, которое продолжается, пока причина раздражения не будет устранена.

    Нервный тик

    Иногда цикличность нарушается и происходит беспорядочное опускание верхнего века, часто конвульсивного характера. Это может происходить синхронно на обоих глазах или только на одном. Явление называется "нервный тик" и считается достаточно болезненным предвестником патологического расстройства. Необходимо сразу обратиться к врачу.

    Нервный тик может появиться и на других участках, например, на щеках. Он выражается в периодическом подергивании мускулатуры в определенных точках. Как правило, подобные явления беспокоят человека. Страдает эстетика лица, кроме того, возникает чувство дискомфорта. Чтобы избавиться от неприятных ощущений, следует сначала промассировать проблемный участок, а затем проконсультироваться с врачом. Подкожное расположение плоской мускулатуры лица предполагает массаж, как средство для поднятия общего тонуса. Существуют методики, специально разработанные специалистами, которые ориентированы на разглаживание морщин и придание эластичности коже. Однако при этом необходимо контролировать мимические эмоции. Например, улыбка должна быть достаточно сдержанной, чтобы кожа на лице не собиралась в складки.

    В некоторых случаях гладкая мышечная ткань лица теряет стабильность и начинает подергиваться по причине психологического характера, причиной может стать бессонница или общее нервное напряжение. Тогда необходимо успокоиться, принять легкие фармацевтические препараты и посоветоваться с врачом.

    www.syl.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *