Степени вакуума, высокий вакуум, сверхвысокий вакуум
Величина давления системы — это традиционная характеристика для классификации степеней вакуума. В настоящее время общий термин «вакуум» относится к любой области, имеющей давление в диапазоне от атмосферного до давления, на 19 порядков ниже атмосферного. Для удобства этот расширенный диапазон давлений подразделяется на несколько интервалов, обозначающих степень вакуума. Данное подразделение величин давления ниже атмосферного является несколько произвольным и представляет собой удобный способ обозначения различных физических явлений, возникающих в пределах величин давления, указанных для каждой степени. Многие промышленные виды применения вакуума могут быть также классифицированы в соответствии со степенью вакуума. В табл. 2 представлены виды промышленного применения вакуума и соответствующие им диапазоны давлений.
Таблица 2. Виды промышленного применения вакуума
Степень вакуума |
Цель |
Виды применения |
Низкий вакуум |
Достижение перепада давления |
Установки получения низкого вакуума в медецине, удерживание и поднятие грузов, пневматические приводы транспортных машин, очистители, филь трация, формование |
Средний вакуум |
Удаление активных газов — компонентов атмосферы |
Лампы (накаливания, люминесцентные, электро- разрядные), плавление, спекание, упаковка, инкап суляция, обнаружение течей |
|
Удаление газовых включений или газов, растворенных в твердых телах |
Сушка, дегидратация, конденсация, сушка вымора живанием, дегазация, лиофильная сушка, импрегна ция |
|
Уменьшение передачи энергии |
Тепловая изоляция, электрическая изоляция, ваку умный микробаланс, моделирование условий кос мического пространства |
Высокий вакуум |
Исключение столкновения молекул |
Электронные и катодно-лучевые трубки, кинеско пы, фотоэлементы, фотоумножители, рентгеновс кие трубки, ускорители, накопители, масс-спектро метры, установки для разделения изотопов, элект ронные микроскопы, сварка электронным лучом, нанесение покрытий (испарением, металлизация напылением), молекулярная дистилляция |
Сверхвысокий вакуум |
Очистка поверхностей |
Дробление, адгезия, эмиссионные исследования, испытания материалов для применения в космичес кой промышленности |
Для рассмотрения физических явлений, связанных с различными степенями вакуума, указанными в табл. 1.2, будет полезно ввести другие понятия, характеризующие степень вакуума: молекулярная концентрация, средняя длина свободного пути молекул газа и время формирования мономолекулярного слоя. Эти термины имеют следующие определения:
- Молекулярная концентрация — среднее число молекул газа в единице объема;
- Средняя длина свободного пути молекул газа — среднее расстояние, которое проходит молекула между двумя последовательными столкновениями с другими молекулами;
- Время формирования мономолекулярного слоя — время, которое необходимо для того, чтобы чистая поверхность покрылась слоем газа толщиной в одну молекулу. Это время определяется отношением числа молекул, необходимым для формирования компактного мономолекулярного слоя (приблизительно 8 x 1014 молекул/см2), и частотой соударений молекул с поверхностью.
На рис. 1.1 показано соотношение между этими величинами в виде функции давления. С помощью приведенных выше определений можно описать физические процессы, характеризующие различные степени вакуума.
Рис 1. Функция Максвелла-Больцмана распределения молекул по скоростям
Низкий и средний вакуум
В диапазоне низкого и среднего вакуума число молекул газа в вакуумном сосуде велико по сравнению с числом молекул, покрывающих поверхность сосуда. Таким образом, снижение давления путем откачки служит для удаления молекул из газовой фазы. Данный диапазон вакуума находится в пределах величин давления от 1 атм до примерно 10-2 Торр. Вакуум такой степени используется во многих промышленных технологиях, где требуется дегазация или сушка материалов и компонентов.
1. Функция Максвелла-Больцмана распределения молекул по скоростям
$$\int _{v}=\frac{1}{n}\frac{dn}{dn}=\frac{4}{\pi ^{\frac{1}{2}}}\left ( \frac{m}{2kT} \right ).$$
2. Наиболее вероятная скорость
$$v_{p}=\sqrt{\frac{2kT}{m}}.$$
3. Среднеарифметическая скорость
$$\bar{v}=\sqrt{\frac{8kT}{\pi m}}==1.13v_{p}.$$
4. Среднеквадратичная скорость
$$v_{max}=\sqrt{\frac{3kT}{m}}=1.225vv_{p}.$$
5. Средняя энергия
$$\bar{e}=\frac{3}{2}kT.$$
Высокий вакуум
Область высокого вакуума соответствует состоянию, при котором молекулы газа располагаются главным образом на поверхностях сосуда и средняя длина свободного пути молекул равна или превышает размеры вакуумного сосуда. Молекулы движутся в вакуумном сосуде, не сталкиваясь с другими молекулами. При такой степени вакуума цель откачки заключается в удалении отдельных молекул. Молекулы покидают поверхность и по отдельности достигают насоса. Высокий вакуум широко используется для нанесения вакуумных покрытий, обработки поверхностей и модификации. Диапазон давлений высокого вакуума составляет от 10-3до 10-7 Торр.
Сверхвысокий вакуум
В условиях сверхвысокого вакуума время формирования мономолекулярного слоя равно или превышает время формирования мономолекулярного слоя в обычных лабораторных условиях. Таким образом, можно производить подготовку и определение свойств чистых поверхностей перед формированием слоя адсорбированного газа. Диапазон давлений сверхвысокого вакуума составляет от 10-7 до 10-15 Торр.
В табл. 2 приведены различные виды применения вакуумной техники во многих ключевых промышленных технологических процессах в зависимости от степени используемого вакуума.
vacuumpro.ru
Как выбрать вакуумный насос — выбор вакуумного насоса, какие бывают вакуумные насосы
В настоящее время для первичной откачки (разрежения) вакуумного сосуда используются разные механические насосы. Наиболее распространенными являются пластинчато-роторные и поршневые насосы объемного действия, в которых узкие пространства между движущимися и неподвижными частями герметизируют маслом. Присутствие герметизирующего и смазочного масел уменьшает внутренние перетечки с выпускной стороны насоса. Масло также заполняет так называемое мертвое пространство под выпускным клапаном. Это позволяет достигать в таких насосах высоких степеней сжатия. Они создают впускные значения давления, равные 10-2 Торр при одной ступени и 10-4 Торр при наличии двух ступеней. Когда присутствие масла нежелательно, могут использоваться разнообразные безмасляные насосы. Они обычно ограничиваются самым низким впускным давлением, равным приблизительно 10-2 Торр. Такими насосами могут быть многоступенчатые поршневые и вращательные роторные насосы (или другие насосы вращательного типа), спиральные насосы или винтовые насосы.
Рис. 3.2. Диапазоны рабочих давлений в миллиметрах рт. ст. для современных вакуумных насосов различных типов.
В настоящее время для достижения высокого вакуума после первоначального разрежения используются четыре различных типа насосов: геттеро-ионные (ионно-испарительные) насосы, крионасосы, масляные пароструйные насосы (или диффузионные насосы) и турбомолекулярные насосы различных конструкций.
- Гетерно-ионные насосы функционируют, обеспечивая химическую реакцию молекул газа с испаряющимися или предварительными напыленными металлическими пленками (обычно титановыми геттерами), а также их ионизацию и последующую хемосорбцию поверхностями электродов. Они больше всего подходят к системам, которые редко имеют выход в атмосферу. Поскольку это газопоглощающие насосы, они не могут использоваться при большом газовыделении. Эти насосы в основном применяют для откачивания вакуумных трубопроводов и проведения долгосрочных экспериментов. В них не используются смазочные масла.
- Крионасосы, как свидетельствует название, замораживают газ на холодных поверхностях путем конденсации и криосорбции. Крионасосы свободны от масла и имеют высокую быстроту действия, в частности для водяного пара. Они являются газопоглощающими насосами и, следовательно, требуют частой регенерации для сброса захваченных газов. Это может представлять собой проблему при откачке опасных газов, поскольку со значительным количеством взрывоопасного или токсичного газа трудно обращаться в условиях аварийного отключения.
- Пароструйные насосы функционируют за счет перемещения молекул газа, которые увлекаются высокоскоростным потоком пара (обычно используют вещества с низким давлением паров, подобные маслам). Преимущество пароструйного насоса заключается в том, что он может откачивать широкий спектр разнообразных газов, включая редкие газы, такие как гелий, которые трудно удалить с помощью крионасосов или обычных турбомолекулярных насосов. Пароструйные насосы позволяют получить очень высокую быстроту действия. Основной недостаток заключается в том, что в случае неправильной эксплуатации пары масел могут поступать обратным потоком в систему.
Для предотвращения такой миграции используются холодные ловушки, которые увеличивают быстроту откачки водяных паров.
- Насосы турбомолекулярного типа обеспечивают откачивающее действие путем столкновений молекул газа с твердой поверхностью, движущейся с высокой скоростью (лопастями роторов или простых дисков или цилиндров). В этих насосах, как правило, не используются масла, они обеспечивают высокую быстроту действия для большинства газов. В силу точности своей конструкции эти насосы особенно подвержены загрязнению частицами. Турбомолекулярный насос может запускаться и выключаться быстрее крионасоса и диффузионного насоса, поэтому его использование имеет смысл при откачке систем, чувствительных к отказам насосов.
На рис. 6 показан приблизительный диапазон значений впускного давления, где такие насосы могут использоваться для непрерывной эксплуатации.
Рис. 6. Сравнение областей перегрузки у различных насосов. Заштрихованные участки на кривых для ионных и криогенных насосов отражают колебания массового потока.
В целях откачки без масла обычно используются крионасосы или турбомолекулярные насосы или насосы с магнитным уплотнителем, поддерживаемые сухими низковакуумными насосами.
Выбор высоковакуумных насосов не является таким же простым, как выбор механических насосов. Конструктивных решений для достижения данного давления за короткое время может оказаться недостаточно, поскольку система может не справиться с постоянным газовыде- лением, о чем свидетельствуют кривые откачки высоковакуумных насосов. Часто скорость газовыделения остается неизвестной, поэтому выбор высоковакуумного насоса должен быть основан на экспериментальных данных.
Поставщики вакуумного оборудования, как правило, предлагают спецификации, основанные на характеристиках откачки пустой камеры. Это может дезориентировать потребителя, если эти характеристики истолковываются как мера эффективности откачки при условиях полной нагрузки. Проектировщики вакуумного оборудования должны соотносить эффективность работы с набором условий, которые известны и могут быть определены и дублированы. Однако эти данные дезориентировали некоторых потребителей, которые истолковывали время откачки как истинный показатель длительности процесса.
Выбор высоковакуумных насосов должен учитывать все факторы, влияющие на работу системы. Эти факторы обычно включают в себя: быстроту действия, допустимое давление предварительного разрежения, скорости обратного потока, давление, при котором достигается максимальная быстрота действия, защитные устройства, простоту технического обслуживания вакуумных систем, простоту эксплуатации, время предварительного разрежения, предельное остаточное давление низковакуумного насоса, используемые перегородки или холодные ловушки, время запуска и т. д. Если эти факторы не будут тщательно взвешены при рассмотрении конструкции системы, ее работа и производительность окажется неудовлетворительной.
Из предыдущего изложения становится очевидным, что нельзя допускать перегрузки насоса при эксплуатации системы. Как правило, высоковакуумные насосы не должны использоваться при значениях впускного давления выше предусмотренного спецификациями максимального значения в течение продолжительных периодов времени. В правильно сконструированной системе с обычной последовательностью низковакуумного и высоковакуумного клапана период эксплуатации свыше этой величины должен измеряться в секундах. В качестве приблизительного ориентира можно пользоваться следующим правилом: если этот период превышает полминуты, насос подвергается перегрузке.
Тогда становится ясно, что в случаях, когда необходимо технологическое давление 10-4 Торр, период работы механического насоса по предварительному разрежению обычно значительно больше откачки высоковакуумным насосом, или, по крайней мере, он должен быть больше по экономическим соображениям.
vacuumpro.ru
В науке и технике под вакуумом понимается состояние газа, плотность которого меньше плотности, соответствующей состоянию воздуха на уровне земли. Чем значительнее уменьшение плотности газа, тем лучше вакуум. Вакуум обладает многими полезными свойствами, которые находят широкое применение в различных областях науки и техники. Например, в вакууме резко снижается химическая активность кислорода в процессе окисления металлов. Другими словами, в вакууме можно сохранять различные химические вещества и использовать их специфические свойства. При очень высоких степенях разрежения поверхности остаются чистыми (без адсорбции хотя бы монослоя газа) в течение нескольких часов, что позволяет проводить исследования таких поверхностей, а также различных явлений, связанных с адсорбированными молекулами газа. Малочисленность молекул остаточного газа в условиях вакуума приводит к тому, что различные частицы могут проходить в таких условиях без столкновений большие расстояния. Особенно это важно для заряженных частиц — элект ронов, ионов и протонов, траекториями движения которых в вакууме можно управлять с помощью электрических и/или магнитных полей. Такие физические явления, как распространение звука, тепло- и массопере-нос, которые при атмосферном давлении определяются процессами взаимодействия молекул газа, существенно изменяются с уменьшением давления вплоть до того, что роль таких взаимодействий в механизме переноса становится второстепенной. Упомянутые эффекты, очевидно, зависят от степени разрежения. Таким образом, плотность остаточного в объеме газа является непосредственной мерой вакуума. Однако еще из работ Бойля было известно, что плотность газа прямо пропорциональна давлению, поэтому сложилась общепринятая практика определять степень вакуума по давлению остаточного газа. Современная вакуумная техника позволяет создавать вакуум, характеризующийся давлением, в 1015 раз меньшим атмосферного. Для удобства весь диапазон достижимых величин разрежения делят на несколько поддиапазонов. Схематично это деление представлено на рис. 1.1, где давление измеряется в Паскалях. На этом рисунке также показаны основные области применения вакуума в зависимости от степени разрежения. Использование вакуума, например в прессах и подъемных механизмах, обусловлено значительными силами, возникающими вследствие разности давлений по обе стороны поршня, а не каких-то особенностей вакуума. Использование упомянутых выше свойств вакуума предусматривает обеспечение соответствующей степени разрежения, что, в свою очередь, требует применения правильно подобранного оборудования вакуумной системы. Чтобы сконструировать вакуумную систему, обладающую оптимальными характеристиками, необходимо знать не только параметры оборудования, но и все те факторы, которые могут влиять на них. Например, совершенно недостаточно знать, что насос имеет скорость откачки, равную 10-1 м3*с-1, и позволяет достигать предельного давления 10-6 Па. В неудачно сконструированных вакуумных системах параметры оборудования могут оказаться значительно хуже (на порядок величины) по сравнению с оптимальными. Поэтому для достижения оптимальных характеристик оборудования необходимо понимать основные принципы работы вакуумной техники. Это особенно важно для сверхвысокого вакуума (ниже 10-6 Па), когда число молекул газа, адсорбированных поверхностями вакуумной камеры, может значительно превышать число молекул, находящихся в объеме. В данной главе в конспективной форме рассмотрены основные законы и понятия, относящиеся к вакуумной технике. Более подробные сведения читатель может получить3′ из книги П. Редхеда с соавторам |
www.pro-vacuum.ru
Применение вакуума в науке и технике
Экспериментальные исследования испарения и конденсации, поверхностных явлений, некоторых тепловых процессов, низких температур, ядерных и термоядерных реакций осуществляются в вакуумных установках. Основной инструмент современной ядерной физики — ускоритель заряженных частиц — немыслим без вакуума. Вакуумные системы применяются в химии для изучения свойств чистых веществ, изучения состава и разделения компонентов смесей, скоростей химических реакций.
Техническое применение вакуума непрерывно расширяется, но с конца прошлого века и до сих пор наиболее важным его применением остается электронная техника. В электровакуумных приборах вакуум является конструктивным элементом и обязательным условием их функционирования в течение всего срока службы. Низкий и средний вакуум используется в осветительных приборах и газоразрядных устройствах. Высокий вакуум — в приемно-усилительных и генераторых лампах. Наиболее высокие требования к вакууму предъявляются при производстве электронно-лучевых трубок и сверхвысокочастотных приборов.
Для работы полупроводникового прибора вакуум не требуется, но в процессе его изготовления широко используется вакуумная технология. Особенно широко вакуумная техника применяется в производстве микросхем, где процессы нанесения тонких пленок, ионного травления, электронолитографии обеспечивают получение элементов электронных схем субмикронных размеров.
В металлургии плавка и переплав металлов в вакууме освобождает их от растворенных газов, благодаря чему они приобретают высокую механическую прочность, пластичность и вязкость. Плавкой в вакууме получают безуглеродистые сорта железа для электродвигателей, высокоэлектропроводную медь, магний, кальций, тантал, платину, титан, цирконий, бериллии, редкие металлы и их сплавы. В производстве высококачественных сталей широко применяется вакуумирование.
Спекание в вакууме порошков тугоплавких металлов, таких, как вольфрам и молибден, является одним из основных технологических процессов порошковой металлургии. Сверхчистые вещества, полупроводники, диэлектрики изготавливаются в вакуумных кристаллизационных установках. Сплавы с любым соотношением компонентов могут быть получены методами вакуумной молекулярной эпитаксии. Искусственные кристаллы алмаза, рубина, сапфира получают в вакуумных установках.
Диффузионная сварка в вакууме позволяет получать неразъемные герметичные соединения материалов с сильно различающимися температурами плавления. Таким способом соединяют керамику с металлом, сталь с алюминием и т. д. Высококачественное соединение материалов с однородными свойствами обеспечивает электронно-лучевая сварка в вакууме.
В машиностроении вакуум применяется при исследованиях процессов схватывания материалов и сухого трения, для нанесения упрочняющих покрытий на режущий инструмент и износостойких покрытий на детали машин, захвата и транспортирования деталей в автоматах и автоматических линиях.
Химическая промышленность применяет вакуумные сушильные аппараты при выпуске синтетических волокон, полиамидов, ами-нопластов, полиэтилена, органических растворителей. Вакуум-фильтры используются при производстве целлюлозы, бумаги, смазочных масел. В производстве красителей и удобрений применяются кристаллизационные вакуумные аппараты.
В электротехнической промышленности вакуумная пропитка как самый экономичный метод широко распространена в производстве трансформаторов, электродвигателей, конденсаторов и кабелей. Повышаются срок службы и надежность при работе в вакууме переключающих электрических аппаратов.
Оптическая промышленность при производстве оптических и бытовых зеркал перешла с химического серебрения на вакуумное алюминирование. Просветленная оптика, защитные слои и интерференционные фильтры получают напылением тонких слоев в вакууме.
В пищевой промышленности для длительного хранения и консервирования пищевых продуктов используют вакуумную сушку вымораживанием. Расфасовка скоропортящихся продуктов, осуществляемая в вакууме, удлиняет сроки хранения фруктов и овощей. Вакуумное выпаривание применяется при производстве сахара, опреснении морской воды, солеварении. В сельском хозяйстве широко распространены вакуумные доильные аппараты. В быту пылесос стал нашим незаменимым помощником.
На транспорте вакуум используется для подачи топлива в карбюраторах, в вакуумных усилителях тормозных систем автомобилей. Имитация космического пространства в условиях земной атмосферы необходима для испытания искусственных спутников и ракет.
В медицине вакуум применяется для сохранения гормонов, лечебных сывороток, витаминов, при получении антибиотиков, анатомических и бактериологических препаратов.
www.pro-vacuum.ru
Вакуум — это… Что такое Вакуум?
состояние газа при давлениях значительно ниже атмосферного. Понятие В. применяется обычно к газу, заполняющему ограниченный объём, но нередко его относят и к газу, находящемуся в свободном пространстве, например в космосе. Поведение газа в вакуумных устройствах определяется соотношением между длиной свободного пробега (См. Длина свободного пробега) λ молекул (или атомов) и размером d, характерным для данного прибора или процесса. Такими размерами могут быть, например, расстояние между стенками вакуумного объёма, диаметр вакуумного трубопровода, расстояние между электродами электровакуумного прибора и т.п. В зависимости от соотношения λ и d различают: низкий В. (λ d), cpeдний В. (λ Вакуум d), и высокий В. (λ d).В вакуумных установках и приборах размером d Вакуум 10 см низкому В. соответствует область давлений выше 102н/м2 (1 мм рт. ст.), среднему В. — от 102 до 10-1н/м2 (от 1 до 10-3мм рт. ст.) и высокому В. — ниже 0,1 н/м2 (10-8 мм рт. ст.). Область давлений ниже 10-6н/м2 (10-8мм рт. cm.) называют сверхвысоким В. Однако, например, в порах или каналах диаметром d Вакуум 1 мкм поведение газа соответствует высокому В. при давлениях, начиная с 103н/м2 (десятки мм рт. ст.), а в камерах для имитации космического пространства, размеры которых достигают десятков метров, границей между средним и высоким В. считают давления 10-3н/м2 (10-5мм рт. ст.).
Наиболее высокая степень В., достигаемая существующими методами, соответствует давлениям 10-13—10-14н/м2 (10-15—10-16мм рт. ст.). При этом в 1 см3 объёма остаётся всего несколько десятков молекул. Достигаемая степень разрежения определяется равновесием между скоростью откачки газа и скоростью его поступления в откачиваемый объём. Поступление может происходить за счёт проникновения газа в вакуумную камеру извне через микроскопические отверстия (течи), а также в результате выделения газа, адсорбированного стенками или растворённого в них (см. Адсорбция). Свойства газа в условиях низкого В. определяются частыми столкновениями молекул газа друг с другом, сопровождающимися обменом энергией между ними. Такой газ обладает внутренним трением (см. Вязкость). Его течение подчиняется законам аэродинамики (см. Аэродинамика разреженных газов). Явления переноса (электропроводность, теплопроводность, внутреннее трение, диффузия) в условиях низкого В. характеризуются плавным изменением или постоянством градиента переносимой величины. Например, температура газа в пространстве между «горячей» и «холодной» стенками в низком В. изменяется постепенно. При этом переносимое количество тепла (Теплопроводность) или вещества (Диффузия) не зависит от давления. Если газ находится в двух сообщающихся сосудах при различных температурах, то при равновесии давления в этих сосудах равны. При прохождении тока в низком В. определяющую роль играет ионизация молекул газа (см. Электрический разряд в газе (См. Электрический разряд в газах), Ионизация).В высоком В. свойства газа определяются только столкновениями его молекул со стенками. Столкновения молекул друг с другом происходят редко и играют второстепенную роль. Движение молекул между стенками происходит прямолинейно (молекулярный режим течения газа). Явления переноса характеризуются возникновением скачка градиента переносимой величины на стенках; например, во всём пространстве между горячей и холодной стенками примерно половина молекул имеет скорость, соответствующую температуре холодной стенки, а другая половина — скорость, соответствующую температуре горячей стенки, т. е. средняя температура газа во всём объёме одинакова и отлична от температуры как горячей, так и холодной стенок. Количество переносимого тепла, вещества и т.д. прямо пропорционально давлению газа. Давление газа, находящегося в сообщающихся сосудах, p1 и p2 при различных абсолютных температурах T1 и T2 определяется соотношением:
Свойства газа в среднем В. являются промежуточными между его свойствами в низком и высоком В.
Особенности сверхвысокого В. связаны уже не с соударениями частиц, а с др. процессами на поверхностях твёрдых тел, находящихся в В. Поверхность любого тела всегда покрыта тонким слоем газа, который может быть удалён нагревом (обезгаживание). После этого поверхностные свойства тел резко изменяются: сильно увеличивается коэффициент трения, в ряде случаев становится возможной сварка материалов даже при комнатной температуре и т.д. Удалённый слои газа постепенно восстанавливается в результате адсорбции молекул газа, бомбардирующих поверхность, что сопровождается изменением её поверхностных свойств. Для изменения этих свойств достаточно образования мономолекулярного слоя газа. Время t, необходимое для образования такого слоя в В., обратно пропорционально давлению. При давлении p = 10-4 н/м2 (10-6 мм рт. ст.) t = 1 сек, при др. давлениях время t (сек) может оцениваться по формуле: t = 10-6* р, где р — давление в мм рт. ст. (или по формуле t = 10-4* р), где р — давление в н/м2. Эти формулы справедливы, если каждая молекула газа, ударяющаяся о поверхность, остаётся на ней (так называемый коэффициент захвата равен 1). В ряде случаев коэффициент захвата меньше 1 и тогда время образования мономолекулярного слоя соответственно увеличивается. При р -6 н/м2 (10-8мм рт. ст.) образование мономолекулярного слоя газа происходит за время, превышающее несколько мин. Сверхвысокий В. определяется как такой В., в котором за время наблюдения не происходит существенного изменения свойств поверхности (первоначально свободной от газа) вследствие её взаимодействия с молекулами газа. О получении и применении В. см. Вакуумная техника, об измерении В. — Вакуумметрия.А. М. Родин.
физический, среда, в которой нет частиц вещества или поля. В технике В. называют среду, в которой содержится «очень мало» частиц; чем меньше частиц находится в единице объёма такой среды, тем более высок В. Однако полный В. — среда, в которой совсем нет частиц, вовсе не есть лишённое всяких свойств «ничто». Отсутствие частиц в физической системе не означает, что она «абсолютно пуста» и в ней ничего не происходит.
Современное понятие В. оформилось в рамках квантовой теории поля (См. Квантовая теория поля). В микромире, который описывается квантовой теорией, имеет место Корпускулярно-волновой дуализм: любые частицы (молекулы, атомы, элементарные частицы) обладают некоторыми волновыми свойствами и любым волнам присущи некоторые свойства частиц (корпускул). В квантовой теории поля все частицы, в том числе и «корпускулы» световых волн, фотоны, выступают на одинаковых основаниях — как кванты соответствующих им физических полей: фотон — квант электромагнитного поля; электрон и позитрон — кванты электронно-позитронного поля; мезоны — кванты мезонного, или ядерного, поля и т.д. С каждым квантом связаны присущие частицам физические величины: масса, энергия, количество движения (импульс), электрический заряд, Спин и др. Состояние системы и её физические характеристики полностью определяются числом составляющих её частиц — квантов — и их индивидуальными состояниями. В частности, у любой квантовой системы имеется вакуумное состояние, в котором она вовсе не содержит частиц (квантов). В таком состоянии энергия системы принимает наименьшее из возможных значений, а её заряд, спин и прочие характеризующие систему Квантовые числа равны нулю. Эти факты интуитивно понятны: поскольку в вакуумном состоянии нет материальных носителей физических свойств, то, казалось бы, для такого состояния значения всех физических величин должны равняться нулю. Но в квантовой теории действует принцип неопределённостей (см. Неопределённостей соотношение), согласно которому только часть относящихся к системе физических величин может иметь одновременно точные значения; остальные величины оказываются неопределёнными. (Так, точное задание импульса частицы влечёт за собой полную неопределённость её координаты.) Поэтому во всякой квантовой системе не могут одновременно точно равняться нулю все физические величины.К величинам, которые не могут быть одновременно точно заданы, относятся, например, число фотонов и напряжённость электрического (или магнитного) поля: строгая фиксация числа фотонов приводит к разбросу (флуктуациям) в величине напряжённости электрического поля относительно некоторого среднего значения (и наоборот). Если число фотонов в системе в точности равно нулю (вакуумное состояние электромагнитного поля), то напряжённость электрического поля не имеет определённого значения: поле всё время будет испытывать флуктуации, хотя среднее (наблюдаемое) значение напряжённости будет равно нулю. Таким флуктуациям подвержены и все другие физические поля — электронно-позитронное, мезонное и т.д.
В квантовой теории поля флуктуации интерпретируются как рождение и уничтожение виртуальных частиц (См. Виртуальные частицы) (то есть частиц, которые непрерывно рождаются и сразу же уничтожаются), или виртуальных квантов данного поля. Наличие флуктуаций не сказывается на значениях полного электрического заряда, спина и др. характеристик системы, которые, как уже говорилось, равны нулю в состоянии В. Однако виртуальные частицы точно так же участвуют во взаимодействиях, как и реальные. Например, виртуальный фотон способен породить виртуальную пару электрон-позитрон, аналогично рождению реальным фотоном реальной электрон-позитронной пары (см. Аннигиляция и рождение пар). Благодаря флуктуациям В. приобретает особые свойства, проявляющиеся в наблюдаемых эффектах, и, следовательно, состояние В. обладает всеми правами «настоящих» физических состояний.Рассмотрим систему, состоящую только из одного реального электрона. Реальных фотонов в такой системе нет, но флуктуации фотонного В. (этот термин и означает отсутствие реальных фотонов) приводят к возникновению «облака» виртуальных фотонов возле этого электрона, а вслед за ними — виртуальных пар электрон-позитрон. Такие пары проявляют себя подобно связанным зарядам в диэлектрике: под действием кулоновского поля реального электрона они поляризуются и экранируют (то есть эффективно уменьшают) заряд электрона. По аналогии с диэлектриком, эффект экранирования заряда виртуальными частицами называется поляризацией вакуума.
В результате поляризации В электрическое поле заряженной частицы на малых расстояниях от неё слегка отличается от кулоновского. Из-за этого, например, смещаются энергетические уровни ближайших к ядру электронов в атоме (см. Сдвиг уровней). Поляризация В. влияет и на поведение заряженных частиц в магнитном поле. Характеризующий это поведение магнитный момент частицы в итоге отличается от своего «нормального» значения, определяемого массой и спином частицы (см. Магнетон). Поправки как к уровням энергии, так и к магнитному моменту, составляют доли процента, и теоретически вычисленные значения с очень высокой точностью согласуются с измеренными на опыте.В. П. Павлов.
dic.academic.ru
Физический вакуум | ВАКУУМ-УКРАИНА, ООО / VACUUM-UKRAINE, LLC / вакуумное оборудование и технологии / the vacuum equipment and technologies.
1.Загадка природы физического вакуума.
Стимулом стойкого интереса к физическому вакууму является надежда ученых на то, что он откроет доступ к океану экологически чистой вакуумной энергии. Очевидно, что эти надежды не беспочвенны. В рамках квантовой электродинамики теория указывает на реальность существования в физическом вакууме “океана” энергии. Плотность энергии вакуума W определяется соотношением:
где: h – постоянная Планка, a – коэффициент, ν – частота.
Отсюда следует, что энергия вакуума может быть очень большой. Однако, вследствие высокой симметрии вакуума, непосредственный доступ к этой энергии весьма затруднителен. В результате, находясь, по существу, среди океана энергии, человечество вынуждено пользоваться только традиционными способами ее получения, основанными на сжигании природных энергоносителей. Тем не менее, при нарушении симметрии вакуума доступ к океану энергии возможен. Поэтому внимание исследователей привлекают новые физические эффекты и феномены в надежде на то, что они позволят заставить физический вакуум “работать”.
При достижении критического уровня возбуждения физический вакуум порождает элементарные частицы – электроны и позитроны. Поэтому многих исследователей интересует способность вакуума генерировать электроэнергию. Эффект Казимира указывает на возможность извлечения механической энергии из вакуума. Достижению реальных результатов, в плане практического использования энергии физического вакуума, мешает отсутствие понимания его природы. Загадка природы физического вакуума остается одной из серьезных нерешенных проблем фундаментальной физики.
По современным представлениям в основе всех физических явлений лежат квантованные поля. Вакуумное состояние является основным состоянием любого квантованного поля. Отсюда следует, что физический вакуум является самым фундаментальным видом физической реальности. В настоящее время преобладает концепция, в рамках которой считается, что вещество происходит из физического вакуума и его свойства проистекают из свойств физического вакуума. Я.Б.Зельдович исследовал даже более амбициозную проблему – происхождение всей Вселенной из вакуума. Он показал, что твердо установленные законы Природы при этом не нарушаются. Строго выполняются закон сохранения электрического заряда и закон сохранения энергии. Единственный закон, который не выполняется при рождении Вселенной из вакуума – это закон сохранения барионного заряда. Остается непонятным, куда подевалось огромное количество антивещества, которое должно было появиться из физического вакуума. Поэтому решение проблемы физического вакуума представляет интерес, как для фундаментальной науки, так и для прикладных исследований. Несмотря на большой интерес к нему, физический вакуум по-прежнему остается загадочным объектом, которому, тем не менее, наука определяет наиболее фундаментальный статус.
2. Философские проблемы вакуума.
Ученые считают физический вакуум особым состоянием материи, претендующим на первооснову мира. В ряде философских концепций в качестве основы мира рассматривается “ничто”, или “содержательная пустота”. При этом подразумевается, что именно “относительное ничто”, лишенное конкретных свойств и ограничений, присущих обычным физическим объектам, должно обладать особой общностью и фундаментальностью и, таким образом, охватывать все многообразие физических объектов и явлений. Философы древнего Востока утверждали, что наиболее фундаментальная реальность мира не может иметь никаких конкретных характеристик и, тем самым, напоминает небытие. Очень похожими признаками ученые наделяют физический вакуум . При этом, физический вакуум, будучи относительным небытием и “содержательной пустотой” является вовсе не самым бедным, а наоборот, самым содержательным, самым “богатым” видом физической реальности. Считается, что физический вакуум, являясь потенциальным бытием, способен породить все множество объектов и явлений наблюдаемого мира.
Несмотря на то, что актуально физический вакуум ничего не содержит, он содержит все потенциально. Поэтому, вследствие наибольшей общности, он может выступать в качестве онтологической основы всего многообразия объектов и явлений в мире. В этом смысле, пустота – самая содержательная и наиболее фундаментальная сущность. Такое понимание физического вакуума заставляет признать реальность существования не только в теории, но и в Природе и “ничто” и “нечто”. Последнее существует как проявленное бытие – в виде наблюдаемого вещественно-полевого мира, а “ничто” существует как непроявленное бытие – в виде физического вакуума. Поэтому, непроявленное бытие, при распространении этого понятия на физический вакуум, следует рассматривать как самостоятельную физическую сущность, которую необходимо изучать.
Физический вакуум непосредственно не наблюдается, но проявление его свойств регистрируется в экспериментах. К вакуумным эффектам относятся: рождение электронно-позитронной пары, эффект Лэмба-Ризерфорда, эффект Казимира. В результате поляризации вакуума электрическое поле заряженной частицы отличается от кулоновского. Это приводит к лембовскому сдвигу энергетических уровней и к появлению аномального магнитного момента у частиц. При воздействии высокоэнергетичного фотона на физический вакуум в поле ядра возникают вещественные частицы – электрон и позитрон. Эффект Казимира указывает на возникновение сил, сближающих две пластины, находящиеся в вакууме. Эти эффекты указывают на то, что вакуум является реальным физическим объектом.
3. Модельные представления физического вакуума.
В современной физике предпринимаются попытки представить физический вакуум различными моделями. Многие ученые, начиная от П.Дирака, пытались найти модельное представление, адекватное физическому вакууму. Известны: вакуум Дирака, вакуум Уилера, вакуум де Ситера, вакуум квантовой теории поля, вакуум Тэрнера-Вилчека и др. Вакуум Дирака является одной из первых моделей. В ней физический вакуум представлен “морем” заряженных частиц, заполняющих все энергетические уровни. Вакуум Уилера состоит из геометрических ячеек планковских размеров. Согласно Уилеру все свойства реального мира и сам реальный мир есть проявление геометрии пространства. Вакуум де Ситтера представлен совокупностью частиц с целочисленным спином, находящихся в низшем энергетическом состоянии. Вакуум квантовой теории поля содержит в виртуальном состоянии всевозможные частицы. Вакуум Тэрнера-Вилчека представлен двумя проявлениями – “истинным” вакуумом и “ложным” вакуумом. То, что в физике считается самым низким энергетическим состоянием, есть “ложный” вакуум, а остинно нулевое состояние находится ниже по энергетической лестнице. При этом “ложный” вакуум может переходить в состояние “истинного” вакуума.
Существующие модели физического вакуума весьма противоречивы. Причина состоит в том, что в сравнении со всеми другими видами физической реальности физический вакуум имеет ряд парадоксальных свойств, что ставит его в ряд объектов, трудно поддающихся моделированию. Например, в модели де Ситтера физический вакуум обладает свойством, совершенно не присущим любому состоянию вещества. Уравнение состояния такого вакуума, связывающее давление Р и плотность энергии W, имеет необычный вид: . Причины появления такого экзотического уравнения состояния связаны с представлением вакуума многокомпонентной средой, в которой для компенсации сопротивления среды движущимся частицам введено понятие отрицательного давления. Обилие различных модельных представлений вакуума может указывать только на то, что до сих пор отсутствуют модели, адекватные реальному физическому вакууму.
4. Проблемы создания теории физического вакуума.
Физика стоит на пороге перехода от концептуальных представлений о физическом вакууме к теории физического вакуума. Современные концепции физического вакуума несколько отягощены геометрическим подходом. Проблема состоит в том, чтобы, оставляя физический вакуум в статусе физической сущности, не подходить к его изучению с механистических позиций. Создание непротиворечивой теории физического вакуума потребует прорывных идей, далеко выходящих за рамки традиционных подходов .
Реальность такова, что в рамках квантовой физики теория физического вакуума не состоялась. Становится все более очевидным, что “зона жизни” теории физического вакуума должна находиться за пределами квантовой физики и, скорее всего, ей предшествовать. По всей видимости, квантовая теория должна быть следствием и продолжением теории физического вакуума, коль физическому вакууму отводится роль наиболее фундаментальной физической сущности, роль основы мира. Будущая теория физического вакуума должна удовлетворять принципу соответствия. В таком случае теория физического вакуума должна естественным образом переходить в квантовую теорию.
По-прежнему остается без ответа вопрос: “какие константы относятся к физическому вакууму?” После выяснения этой проблемы и получения уравнений, описывающих вакуум непосредственно как физический объект, а не как геометрический объект, можно будет говорить о появлении теории физического вакуума, рассматривающей его как физическую сущность. Есть все основания считать, что создание теории физического вакуума позволит не только расширить знания об устройстве мира, но и прикоснуться к тайне происхождения Вселенной.
5. Несостоятельность концепции дискретного вакуума.
Идеи о том, что какие-либо дискретные частицы могут составлять основу физического вакуума, оказались не состоятельными как в теоретическом плане, так и в практическом приложении. Подобные идеи вступают в противоречие с фундаментальными принципами физики, например, принципом Паули. Если считать, что физический вакуум состоит из частиц с целочисленным спином, то опять же возникают проблемы по типу экзотического уравнения состояния, как это происходит, например, в модели де Ситтера.
Как считал П.Дирак, физический вакуум может порождать дискретное вещество. Это значит, что физический вакуум должен генетически предшествовать веществу. Чтобы понять суть физического вакуума, надо оторваться от стереотипного понимания “состоять из…”. Мы привыкли, что наша атмосфера – это газ, состоящий из молекул. Долгое время в науке господствовало понятие “эфир”. И сейчас можно встретить сторонников концепции светоносного эфира или существования в физическом вакууме газа из элементарных частиц. Если и удастся найти место “эфиру” или иным дискретным объектам в теории или в моделях, то место такого вида физической реальности всегда будет вторичным. Вновь и вновь будет возникать задача выяснения их происхождения. Такова участь всех концепций, которые отводят дискретным объектам роль первоосновы мира.
Можно сделать вывод, что концепция дискретного вакуума принципиально несостоятельна. Весь путь развития физики показал, что никакая частица не может претендовать на фундаментальность и выступать в качестве основы мироздания. Дискретность свойственна веществу. Вещество вторично, оно происходит из непрерывного вакуума, поэтому оно принципиально не может выступать в качестве фундаментальной основы мира.
Физика, на примере проблемы физического вакуума, сталкивается с той же коллизией непрерывности и дискретности, с которой столкнулась математика в теории множеств. Попытка разрешить противоречие непрерывности и дискретности в математике была предпринята Кантором (континуум-гипотеза Кантора). Эту гипотезу не удалось доказать ни ее автору, ни другим выдающимся математикам. В настояшее время причина неудач выяснена. В соответствии с выводами Коэна: Сама идея множественной или дискретной структуры континуума несостоятельна. Распространяя этот результат на континуальный вакуум можно утверждать: “идея множественной или дискретной структуры физического вакуума является несостоятельной”.
По-настоящему прорывным является подход, основанный на том, что физический вакуум реально существует в виде непрерывной среды. К нему неприменимы какие бы то ни было меры. При таком подходе к физическому вакууму находит объяснение его ненаблюдаемость. Не следует связывать ненаблюдаемость физического вакуума с несовершенством приборов и способов исследования. Физический вакуум принципиально ненаблюдаемая среда – это прямое следствие его непрерывности. Для физической сущности, обладающей свойством непрерывности, нельзя указать никаких других свойств и признаков. К такому физическому объекту неприменимы никакие меры, это антипод всему дискретному.
6. Новое понимание сущности физического вакуума.
Современные физические теории демонстрируют тенденцию перехода от частиц – трехмерных объектов, к объектам нового вида, имеющим меньшую размерность. Например, в теории суперструн размерность объектов-суперструн намного меньше размерности пространства-времени. Считается, что у физических объектов, имеющих меньшую размерность, больше оснований претендовать на фундаментальный статус.
В этом отношении прорывным можно считать подход В.Жвирблиса. Жвирблис утверждает, что физический вакуум – непрерывная материальная среда. По аналогии с “нитью Пеано”, бесконечно плотно заполняющей двумерное пространство, условно разбитое на квадраты, автор предлагает свою модель физического вакуума – “нить Жвирблиса”, бесконечно плотно заполняющую трехмерное пространство, условно разбитое на тетраэдры. По нашему мнению – это огромный прорыв в понимании сущности физического вакуума. Жвирблис в качестве модели физического вакуума рассматривает одномерный математический объект – “нить Жвирблиса”. В отличие от всех известных моделей, в его модели дискретности отведено самое минимальное место. А в пределе понимается, что при сверхплотном заполнении пространства среда становится непрерывной.
Как отмечалось выше, в связи с тем, что физический вакуум претендует на фундаментальный статус, даже на онтологический базис материи, он должен обладать наибольшей общностью и ему не должны быть присущи частные признаки, характерные для множества наблюдаемых объектов и явлений. Известно, что присвоение объекту какого-либо дополнительного признака уменьшает универсальность этого объекта. Так, например, ручка – универсальное понятие. Добавление какого-либо признака сужает круг охватываемых этим понятием объектов (ручка дверная, шариковая и т. п.). Таким образом, приходим к выводу, что на онтологический статус может претендовать та сущность, которая лишена каких-либо признаков, мер, структуры и которую принципиально нельзя моделировать, поскольку любое моделирование предусматривает использование дискретных объектов и описание при помощи признаков и мер. Физическая сущность, претендующая на фундаментальный статус не должна быть составной, поскольку составная сущность имеет вторичный статус по отношению к ее составляющим.
Таким образом, требование фундаментальности и первичности для некой сущности влечет за собой выполнение следующих основных условий:
Не быть составной.
Иметь наименьшее количество признаков, свойств и характеристик.
Иметь наибольшую общность для всего многообразия объектов и явлений.
Быть потенциально всем, а актуально ничем.
Не иметь никаких мер.
Не быть составной – это означает не содержать в себе ничего, кроме самой себя. Относительно наименьшего количества признаков, свойств и характеристик идеальным должно быть требование – не иметь их совсем. Иметь наибольшую общность для всего многообразия объектов и явлений – это означает не обладать признаками частных объектов, поскольку любая конкретизация сужает общность. Быть потенциально всем, а актуально ничем – это означает оставаться ненаблюдаемым, но в то же время сохранять статус физического объекта. Не иметь никаких мер – это означает быть нульмерным.
Эти пять условий чрезвычайно созвучны с мировоззрением философов древности, в частности, представителей школы Платона. Они считали, что мир возник из фундаментальной сущности – из изначального Хаоса. По их воззрениям Хаос породил все существующие структуры Космоса. При этом Хаосом они считали такое состояние системы, которое остается на конечном этапе по мере некоего условного устранения всех возможностей проявления ее свойств и признаков.
Перечисленным выше пяти требованиям не удовлетворяет ни один дискретный объект вещественного мира и ни один квантовый объект поля. Отсюда следует, что этим требованиям может удовлетворять только непрерывная сущность. Поэтому, физический вакуум, если его считать наиболее фундаментальным состоянием материи, должен быть непрерывным (континуальным). Кроме того, распространяя достижения математики на область физики (континуум-гипотеза Кантора), приходим к выводу о несостоятельности множественной структуры физического вакуума. Это значит, что физический вакуум недопустимо отождествлять с эфиром, с квантованным объектом или считать его состоящим из каких бы то нибыло дискретных частиц, даже если эти частицы виртуальные.
По нашему мнению, физический вакуум следует рассматривать как антипод вещества. Таким образом, мы рассматриваем вещество и физический вакуум как диалектические противоположности. Целостный мир представлен совместно веществом и физическим вакуумом. Такой подход к этим сущностям соответствует физическому принципу дополнительности Н.Бора. В таких отношениях дополнительности следует рассматривать физический вакуум и вещество.
С такого рода физическим объектом – ненаблюдаемым, в котором нельзя указать никаких мер, физика еще не сталкивалась. Предстоит преодолеть этот барьер в физике и признать существование нового вида физической реальности – физического вакуума, обладающего свойством непрерывности. Физический вакуум, наделенный свойством непрерывности, расширяет класс известных физических объектов. Несмотря на то, что физический вакуум является столь парадоксальным объектом, он все увереннее становится предметом изучения физики. В то же время, по причине его непрерывности, традиционный подход, основанный на модельных представлениях, для вакуума неприменим. Поэтому, науке предстоит найти принципиально новые методы его изучения. Выяснение природы физического вакуума позволяет по-иному взглянуть на многие физические явления в физике элементарных частиц и в астрофизике. Вся видимая Вселенная и темная материя находятся в ненаблюдаемом, непрерывном физическом вакууме. Физический вакуум генетически предшествует физическим полям и веществу, он порождает их, поэтому вся Вселенная живет по законам физического вакуума, которые науке пока еще не известны.
В цепи проблем, связанных с познанием природы физического вакуума, есть ключевое звено, относящееся к оценке энтропии физического вакуума. Мы считаем, что физический вакуум имеет наибольшую энтропию среди всех известных физических объектов и систем, поэтому для него H-теорема Больцмана неприменима. Приведенные выше пять критериев первичности и фундаментальности указывают на то, что таким требованиям может удовлетворять объект, имеющий наивысшую энтропию. Мы считаем, что фазовый переход вакуум-вещество относится к процессам самоорганизации. Точно так, как H-теорема Больцмана и теорема Гиббса стали основным инструментом в термодинамике, для теории физического вакуума необходимо искать свой инструмент на основе обобщения H-теоремы на процессы самоорганизации. Такой прорывной подход уже наметился. Принципиально новый подход, применимый для изучения физического вакуума, открывает закон уменьшения энтропии, установленный Ю.Л.Климонтовичем.
7. Закон уменьшения энтропии. S-теорема Климонтовича.
Исходя из того, что фазовый переход вакуум-вещество следует относить к процессам самоорганизации, возникает задача поиска нового инструмента для исследования физического вакуума на основе обобщения H-теоремы Больцмана на процессы самоорганизации. Поскольку физический вакуум имеет наибольшую энтропию среди всех известных физических объектов и систем, то в контексте этой задачи необходимо искать подтверждение закону уменьшения энтропии.
В термодинамике основным законом является закон возрастания энтропии. Этот закон был установлен Больцманом на примере идеального газа. Он носит название Н-теоремы Больцмана. Климонтович Ю.Л. показал, что для процессов самоорганизации действует иной закон – закон уменьшения энтропии. Аналогом Н-теоремы Больцмана для открытых систем является S-теорема Климонтовича. Суть нового закона сводится к следующему: если за начало отсчета степени хаотичности принять “равновесное состояние”, отвечающее нулевым значениям управляющих параметров, то по мере удаления от равновесного состояния, вследствие изменения управляющего параметра, значения энтропии, отнесенные к заданному значению средней энергии, уменьшаются.
Совсем недавно появилось сообщение об экспериментальном подтверждении закона уменьшения энтропии. Ученые из Австралийского национального университета экспериментально обнаружили, что на малых временах траектории частиц микроных размеров явно указывают на уменьшение энтропии. В эксперименте исследовалось поведение системы коллоидных частиц микронного размера, находящихся в воде, в оптической ловушке, созданной сфокусированным лазерным лучом. Исследователи с высокой точностью отслеживали положение частиц. При выключенном лазере частицы совершали броуновское движение, однако при включении лазера на них начинала действовать сила, направленная в область максимальной интенсивности света. Было установлено, что на коротких интервалах траектории частиц соответствуют уменьшению энтропии, тогда как на больших – секундных интервалах, таких траекторий практически не наблюдается. Это прямое наблюдение нарушения второго закона термодинамики. Этот эксперимент подтверждает установленный Климонтовичем Ю.Л. закон уменьшения энтропии для открытых систем.
Ниже приведены некоторые результаты наших экспериментальных исследований, которые, на наш взгляд, также подтверждают закон уменьшения энтропии. Нами исследовались необычные физические эффекты, обнаруженные в плазме. В плазме наблюдалось появление регулярных структур. Квазинейтральное состояние плазмы менялось на упорядоченное состояние. Образовавшиеся регулярные структуры имели фрактальные закономерности. Некоторые фотографии “отпечатков” плазменных фракталов, зафиксированные на мишенях из тугоплавких металлов, приведены ниже на рис.1. В соотношениях ширины полос в фрактальных кольцевых структурах просматривается характерная зависимость, построенная по принципу УДВОЕНИЯ периода. На универсальность удвоения периода колебаний в системах имеющих хаотическое поведение обратил внимание в своих исследованиях Фейгенбаум.
Рис.1. Фотографии “отпечатков” фрактальных структур, возникающих в плазме.
На рис.2 схематически показаны плазменные фракталы, восстановленные по “отпечаткам” на мишенях. На рис.2б показано сечение фрактального конуса и его тонкая структура.
а б
Рис.2. Плазменные фракталы.
Фрактальные проявления в структурах является всеобщим признаком для множества природных проявлений. Фракталы проявляются как на макроуровне, так и на уровне элементарных частиц. Плазма не оказалась исключением. Появление регулярных структур в плазме указывает на наличие процессов в ней, идущих с уменьшением энтропии. Результаты исследования уменьшения энтропии плазмы могут оказаться ключевыми для понимания процессов в физическом вакууме, приводящих к рождению дискретного вещества из вакуума.
Теорема Климонтовича практически снимает запрет на возможность возникновения регулярных структур в континууме. В рамках теории физического вакуума, используя S-теорему Климонтовича, появляется возможность обосновать возникновение не только регулярных структур в континууме, но и порождение дискретных частиц из непрерывного вакуума. Одним из следствий S-теоремы Климонтовича является вывод о том, что корни дискретности следует искать в непрерывности. Закон уменьшения энтропии Климонтовича дает ключ к разрешению фундаментальной коллизии непрерывности и дискретности, которая до сих пор не нашла своего решения.
Выводы.
Выяснение сущности физического вакуума является важнейшей задачей фундаментальной физики. Решение этой задачи может дать ключ к созданию новой физической теории.
Физический объект, претендующий на фундаментальный статус, должен обладать наибольшей общностью. Ему не должны быть присущи частные признаки, характерные для множества наблюдаемых объектов и явлений.
Сформулированы основные критерии первичности и фундаментальности для физических объектов.
Наибольшей общностью обладает объект, имеющий свойство непрерывности, поэтому физический вакуум, претендующий на фундаментальный статус, должен считаться непрерывной физической сущностью.
Физический вакуум, обладающий свойством непрерывности, расширяет класс известных физических объектов.
Дискретное вещество и непрерывный физический вакуум соотносятся между собой как взаимодополняющие и взаимосвязанные противоположности по типу “ИНЬ” и “ЯН”. Применительно к физике, они находятся в отношениях дополнительности, соответствующих принципу дополнительности Н.Бора.
Физический вакуум имеет наибольшую энтропию среди всех известных физических объектов и систем.
Для теории физического вакуума необходимо искать новый инструмент исследования на основе обобщения H-теоремы Больцмана на процессы самоорганизации.
Обнаруженные фракталы в плазме подтверждают закон уменьшения энтропии в процессах самоорганизации.
Новый подход к изучению физического вакуума открывает S-теорема Климонтовича. Закон уменьшения энтропии Климонтовича дает ключ к разрешению фундаментальной коллизии непрерывности и дискретности, которая до сих пор не нашла своего решения.
www.vacuum-ukraine.com
Вакуум — Традиция
Ва́куум (лат. vacuum — «пустота») — среда, содержащая газ при давлениях значительно ниже атмосферного.
Пробег молекулы газа в вакууме Вакуум выражается отношением между длиной свободного пробега молекул газа \(\!l\) и расстоянием \(~d\). Обычно за \(\!d\) принимается диаметр стенок вакуумной камеры, вакуумного трубопровода и т.д. В зависимости от величины соотношения \(\frac{l}{d}\), различают низкий (\(\frac{l}{d} \ll 1\)), средний (\(\frac{l}{d} \sim 1\)) и высокий \(\frac{l}{d} \gg 1\)) вакуум.[1]
- Различают:
- Физический вакуум;
- Технический вакуум.
Длина пробега молекулы в вакууме[править]
Как известно в отсутствии конвекционных потоков запах в воздухе распространяется очень медленно, хотя скорость молекул газа достаточно высока (порядка 500 метров в секунду). Причина этого заключается в том , что распространение запаха осуществляется посредством медленного процесса диффузии. Малая скорость диффузии и аналогичных ей явлений Клаузиус объяснил столкновениями молекул.
Молекула газа не всё время движется свободно, а время от времени испытывает столкновения с другими молекулами. Свободно она пролетает короткое расстояние от одного столкновения до следующего и в результате чего траектория молекулы описывается ломаной линией с большим количеством звеньев. Для количественного описания явления Клаузиус ввёл понятие средней длины свободного пробега, т.е. среднего расстояния, которое пролетает молекула от одного столкновения до следующего. Этот параметр имеет важное значение для описания явлений переноса — диффузии, внутреннего трения и теплопроводности.
Формула средней длины свободного пробега молекулы газа: $$\,l = \frac{\!1}{\pi\,d^2\,n} $$ $$\,l = 0.707\frac{\!1}{\pi\,d^2\,n} $$(более точная формула) где:
- \(\!l\) — длины свободного пробега газа
- \(\!d\) — одинаковый диаметр молекул газа
- \(\!n\) — концентрация молекул газа
Молекулы начинают сталкиваться друг с другом, если расстояние между их центрами меньше \(\!d\). Поэтому можно рассмотреть одну молекулу с радиусом \(\!d\), движущуюся в присутствии точечных частиц (анимация).
В течение времени \(\!t\), эта молекула столкнется со всеми частицами, лежащими внутри цилиндра объёмом \(\,V = \pi\,d^2\,nvt \), где \(\!v\) — средняя скорость их движения. Средняя длина свободного пробега равняется высоте цилиндра \(\!l = \,v\,t \), который содержит в среднем лишь одну молекулу.
Физический вакуум[править]
Под физическим вакуумом в современной физике понимают полностью лишённое вещества пространство. Даже если бы удалось получить это состояние на практике, оно не было бы абсолютной пустотой. Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами, но не только, а также, в теории могут существовать несколько различных вакуумов, различающихся плотностью энергии, и т. д.
Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира[2] и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (так называемых ложных вакуумов) является одним из главных основ инфляционной теории Большого взрыва.
Технический вакуум[править]
На практике сильно разреженный газ называют техническим вакуумом. В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно. Мерой степени разрежения вакуума служит длина свободного пробега молекул газа \(< \lambda >\), связанной с их взаимными столкновениями в газе, и характерного линейного размера \(l\) сосуда, в котором находится газ. Строго говоря, техническим вакуумом называют газ в сосуде или трубопроводе с давлением ниже, чем в окружающей атмосфере. Согласно другому определению, когда молекулы, или атомы газа перестают сталкиваться друг с другом, и газодинамические свойства сменяются вязкостными (при давлении около 1 Торр) говорят о достижении низкого вакуума(\(\lambda \)). Обычно низковакуумный насос стоит между атмосферным воздухом и высоковакуумным насосом, создавая предварительное разрежение, поэтому низкий вакуум часто называют форвакуум. При дальнейшем понижении давления в камере, увеличивается средняя длина свободного пробега λ молекул газа. При \(\lambda >> l\) молекулы газа уже не сталкиваются друг с другом, а свободно перемещаются от стенки до стенки, в этом случае говорят о высоком вакууме(10-5 Торр). Сверхвысокий вакуум соответствует давлению 10-9 Торр и ниже. Для сравнения, давление в космосе на несколько порядков ниже, в дальнем же космосе и вовсе может достигать 10-30 Торр и ниже.
Высокий вакуум в микроскопических порах некоторых кристаллов достигается при атмосферном давлении, что связано именно с длиной свободного пробега газа.
Аппараты, используемые для достижения и поддержания вакуума, называются вакуумными насосами. Для поглощения газов и создания необходимой степени вакуума используются геттеры. Более широкий термин вакуумная техника включает также приборы для измерения и контроля вакуума, манипулирования предметами и проведения технологических операций в вакуумной камере, и т. д.
Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.
Величина давления системы — это традиционная характеристика для классификации степеней вакуума. В настоящее время общий термин «вакуум» относится к любой области, имеющей давление в диапазоне от атмосферного до давления, на 19 порядков ниже атмосферного. Для удобства этот расширенный диапазон давлений подразделяется на несколько интервалов, обозначающих сте́пень ва́куума.
- ↑ http://www.oval.ru/enc/24034.html
- ↑ Физическая энциклопедия, т.5. Стробоскопические приборы — Яркость/ Гл. ред. А. М. Прохоров. Ред.кол.:А. М. Балдин,А. М. Бонч-Бруевич и др. — М.:Большая Российская Энциклопедия,1994, 1998.-760 с.:ил. ISBN 5-85270-101-7 , стр.644
При написании этой статьи использовались материалы страницы «Вакуум» Русской Википедии.
traditio.wiki