Содержание

Белки. Из чего состоят Белки. Незаменимые белки. Растительные белки

Ну вот, мы уже знаем, что нам нужно есть и сколько если хотим похудеть или же поправиться.
Мы уже знаем, что есть нужно небольшими порциями и часто, мы даже уже знаем что человек, как и все живое состоит из белков, жиров и углеводов. 

Начнем с белка.

Слово «протеин» (белок) происходит от греческого слова «протейос», что означает «занимающий первое место». Белок составляет около 50% сухого веса любого тела. Белок содержится в каждой клетке нашего организма. Около 30% всех белков человеческого тела находится в мышцах, 20% — в костях и сухожилиях и 10% — в коже.  А т.к. наш организм – постоянно обновляющийся механизм, белка нужно достаточно много. 

Белки – сложные органические соединения, состоящие из аминокислот.  

Большинство людей не задумываются, над тем, какой белок потребляют, кто-то не любит яйца, кто-то ест только рыбу, кто-то увлекается вегетарианством и полагают, что потребляют достаточное количество белка. Возможно у кого-то это получается. Тем не менее, каждому продукту свойственен свой особый вид белка, точнее вид то один, а вот аминокислотный состав у всех разный, поэтому то белок и сложное соединение, хотя состоит всего из нескольких элементов — углерода, азота, кислорода, водорода

(в некоторых содержится сера и фосфор)

В человеческом организме присутствуют около 5 миллионов! белков. И все они образуются всего из 22 основных аминокислот (на самом деле их больше, но в формировании «человеческого» белка участвуют всего 22).  При соединении двух или нескольких аминокислот образуется более сложное соединение — полипептид. Полипептиды, соединяясь, образуют ещё более сложные и крупные частицы и в итоге — сложную молекулу белка, при усвоении происходит обратный процесс: белок – полипептиды – аминокислоты, из которых организм синтезирует уже специфические белки, свойственные именно ему. Если белка поступает слишком много, то избыток аминокислоты в результате окисляются до углекислого газа и воды.

Аминокислоты делятся на заменимые и незаменимые.
К заменимым относятся все аминокислоты, которые организм способен синтезировать сам.
К незаменимым относятся те аминокислоты, которые не синтезируются организмом и должны постоянно поступать с пищей. На сегодняшний день выделяют 10 незаменимых аминокислот: изолейцин, метионин, лизин, лейцин, треонин, валин, гистидин, фенилаланин, триптофан и аргинин. 

Незаменимые аминокислоты  в организме служат  для синтеза тканевых белков, т.е  расходуются на пластические нужды организма, а также в качестве источников энергии (распад белка на аминокислоты сопровождается выделением энергии: 1г белка – 4Ккал). Кроме того, аминокислоты входят в состав нейромедиаторов (клетки, проводящие нервные импульсы в головной мозг человека), т.е. от полноценности белков и регулярности их поступления зависит работа всей нервной системы.

Многие процессы в организме происходят под действием ферментов и гормонов. И тут тоже не обошлось без аминокислот:)  Они служат основой для их создания. Как видите, белки, и, в частности, аминокислоты играют огромную роль в нашем организме. Недостаток хотя бы одной из незаменимых кислот в пище в течение длительного времени приводит серьезным заболеваниям.

Белки, в состав которых входят полный набор, включая незаменимые считаются полноценными. Такие белки содержатся в животной пище. Растительные белки считаются неполноценными, т.к. не содержат в себе некоторых незаменимых аминокислот (кроме сои, гороха и фасоли).

Идеальным, с точки зрения  аминокислотного состава и сбалансированности, считается белок куриного яйца. И раз уж речь зашла о балансе, стоит отметить, что не все полноценные белки (преимущественно животные) одинаковы, во всех соотношение тех или иных аминокислот разное. Конечно, можно есть одни яйца, но это скучно:) Один полноценный белок вполне можно заменить несколькими неполноценными.

Разнообразие белков в пище обеспечивает необходимый баланс незаменимых кислот нашему организму. Кроме полноценности белков, так же важно количество.
На сегодняшний момент ВОЗ  рекомендует следующую суточную потребность в аминокислотах:

Валин — 4000 мг
Изолейцин — 4000 мг
Лейцин — 6000 мг
Лизин — 5000 мг
Метионин — 4000 мг
Треонин — 3000 мг
Триптофан — 1000 мг
Фенилаланин — 4000 мг
Гистидин — 2000 мг
Аргинин — 6000 мг
Аланин — 3000 мг
Аспарагиновая кислота — 6000 мг
Глицин — 3000 мг
Глютаминовая кислота — 16000 мг
Пролин — 5000 мг
Серин — 3000 мг
Тирозин — 4000 мг

Цистин — 3000 мг

По сложности и скорости усваивания лучше и быстрее всего усваиваются молочные белки и яичный белок. Следом идут белок, получаемый из рыбы и мяса. Сложнее переваривать растительные белки, чем ближе растительный белок к полноценному, тем сложнее он усваивается. Самые сложные для усвоения – грибы. 

Дефицит белка в питании  ведёт к мышечной дистрофии, снижает иммунитет, так как уменьшается уровень образования антител, обеспечивающих невосприимчивость организма к микробам, нарушается синтез лизоцима и интерферона, обостряется течение воспалительных процессов, неблагоприятно отражается на деятельности сердечно-сосудистой, дыхательной и других систем. 

Избыток же белка вреден огромной нагрузкой на почки и печень, т.к. при неадекватно большом потреблении белка выделяются в значительных количествах продукты распада, такие как: аммиак, мочевина, индол, скатол, фенол. Согласитесь – не очень приятные побочные эффекты. 

Если белка слишком мало, а нагрузка очень большая, то организм будет вынужден черпать ресурсы из других источников – в первую очередь из мышц.  Кроме того, при недостатке белка увеличивается потеря калия, ускоряется выведение с мочой аскорбиновой кислоты, тиамина, рибофлавина, пиридоксина, ниацина, что приводит к формированию дефицита этих витаминов в организме даже при достаточном их поступлении.

В среднем, человеку нужно 1 – 1,3 г. белка на 1 кг массы тела.  Чем больше ваша активность и интенсивней тренировки (или работа, связанная с физической активностью), тем больше нужно белка. Женщинам необходимо меньше белка, чем мужчинам.

При активных занятиях спортом, в период наращивания массы, во время беременности и активного роста в среднем требуется от 2 до 2,5 г белка на 1кг веса. 

В отдельных случаях, при сверх высоких нагрузках потребность в белке может достигать 3 г на 1 кг веса.

Потребление белка должно быть адекватно вашим нагрузкам.

Чем больше вы едите белковой пищи, тем больше нужно пить воды

. Она помогает выводить продукты распада, соответственно облегчает работу печени и почкам.

За один прием усваивается около 40-50гр. белка, поэтому разумно разделить всю дневную норму белков на несколько порций. 

Вконтакте

Facebook

Twitter

Google+

LiveJournal

LinkedIn

Одноклассники

naturfit.ru

Из чего состоят аминокислоты. Для чего нужны аминокислоты и как их принимать? Противопоказания и побочные эффекты

Аминокислоты являются очень важными веществами для атлетов. Это связано хотя бы с тем, что все белки состоят именно из аминокислот. Узнайте о типах и применении аминокислот в бодибилдинге .

Аминокислотными соединениями называются органические вещества, в состав которых входят карбоксильные группы и аминогруппы. Аминокислоты являются строительным материалом для всех белковых соединений человеческого тела. Они способны не только ускорять рост мускульной массы, но и оказывают сильное влияние на различные процессы, протекающие в организме.

Аминокислоты в продуктах и спортивном питании

Аминокислоты являются «строительными блоками». Белки играют важную роль в организме человека. Здоровый, худощавый взрослый составляет от 12 до 18% белка. Белки выполняют многие важные функции в организме и строят ткани тела. Белки тела состоят из 20 различных аминокислот. При производстве белков аминокислоты связаны вместе как цепь. Две связанные аминокислоты называются дипептидом, три трипептида аминокислот. Малые белки состоят из цепи из примерно 50 аминокислот. Большие белки состоят из сотен или тысяч аминокислот и могут состоять из двух или более сложенных аминокислотных цепей.

Виды аминокислот

Хотя все аминокислотные соединения и имеют похожие химические формулы, они отличаются своими свойствами. По этим признаком их и классифицируют. Однако научная классификация отличается от спортивной, и мы сегодня будем говорить об аминокислотах в бодибилдинге. Таким образом, для нас интерес представляет следующая классификация аминокислотных соединений :

Поскольку белки являются основными составляющими большинства клеточных структур, нам нужно есть достаточно белка с пищей. Это особенно важно во время беременности, во время роста и повреждения тканей в результате травмы или болезни. Из 20 аминокислот в организме человека десять считаются незаменимыми аминокислотами. Это означает, что организм не может производить его в достаточном количестве, и он должен питаться едой. Восемь из десяти аминокислот не могут быть произведены людьми, два — только в очень малых количествах.

Полный белок содержит все незаменимые аминокислоты в достаточном количестве. Полные белки встречаются, например, в говядине, рыбе, домашней птице, яйцах и молоке. Неполные белки не содержат всех незаменимых аминокислот. Они встречаются, например, в зеленых листовых овощах, бобовых и зерновых.

  • Заменимые;
  • Незаменимые;
  • Частично замен

mexamoll.ru

Общая характеристика аминокислот — Аминокислоты — Статьи

Аминокислоты — органические кислоты, молекулы которых содержат одну или несколько аминогрупп (NH2-группы). Представляют основные структурные элементы белков. Белки пищи в организме человека расщепляются до аминокислот. Определенная часть аминокислот, в свою очередь, расщепляется до органических кетокислот, из которых в организме вновь синтезируются новые аминокислоты, а затем белки. В природе обнаружено свыше 20 аминокислот.

Аминокислоты всасываются из желудочно-кишечного тракта и с кровью поступают во все органы и ткани, где используются для синтеза белков и подвергаются различным превращениям. В крови поддерживается постоянная концентрация аминокислот. Из организма выделяется около 1 г азота аминокислот в сутки. В мышцах, ткани головного мозга и печени содержание свободных аминокислот во много раз выше, чем в крови, и менее постоянно. Концентрация аминокислот в крови позволяет судить о функциональном состоянии печени и почек. Содержание аминокислот в крови может заметно нарастать при нарушениях функции почек, лихорадочных состояниях, заболеваниях, связанных с повышенным содержанием белка.

Аминокислоты подразделяются на незаменимые  (валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, лизин), частично заменимые   (аргинин и гистидин) и заменимые  (аланин, аспарагин, аспарагиновая кислота, глицин, глутамин, глутаминовая кислота, пролин, серин, тирозин, цистеин).

Незаменимые аминокислоты не синтезируются в организме человека, но необходимы для нормальной жизнедеятельности. Они должны поступать в организм с пищей. При недостатке незаменимых аминокислот задерживается рост и развитие организма. Оптимальное содержание незаменимых аминокислот в пищевом белке зависит от возраста, пола и профессии человека, а также от других причин. Заменимые аминокислоты синтезируются в организме человека.

Аминокислоты представляют собой структурные химические единицы, образующие белки.

Любой живой организм состоит из белков. Разнообразные формы белков принимают участие во всех процессах, происходящих в живых организмах. В теле человека из белков формируются мышцы, связки, сухожилия, все органы и железы, волосы, ногти; белки входят в состав жидкостей и костей. Ферменты и гормоны, катализирующие и регулирующие все процессы в организме, также являются белками.

Дефицит белков в организме может привести к нарушению водного баланса, что вызывает отеки. Каждый белок в организме уникален и существует для специальных целей. Белки не являются взаимозаменяемыми. Они синтезируются в организме из аминокислот, которые образуются в результате расщепления белков, находящихся в пищевых продуктах. Таким образом, именно аминокислоты, а не сами белки являются наиболее ценными элементами питания.

Какие еще функции выполняют аминокислоты?

Помимо того, что аминокислоты образуют белки, входящие в состав тканей и органов человеческого организма так некоторые из них:

  • Выполняют роль нейромедиаторов или являются их предшественниками. Нейромедиаторы — это химические вещества, передающие нервный импульс с одной нервной клетки на другую. Таким образом, некоторые аминокислоты необходимы для нормальной работы головного мозга.
  • Аминокислоты способствуют тому, что витамины и минералы адекватно выполняют свои функции.
  • Некоторые аминокислоты непосредственно снабжают энергией мышечную ткань.
Что будет, если аминокислот не хватает?

В организме человека многие из аминокислот синтезируются в печени. Однако некоторые из них не могут быть синтезированы в организме, поэтому человек обязательно должен получать их с пищей. К таким незаменимым аминокислотам относятся:

  • гистидин,
  • изолейцин,
  • лейцин,
  • лизин,
  • метионин,
  • фенилаланин,
  • треонин,
  • триптофан,
  • валин.

Аминокислоты, которые синтезируются в печени, включают:

  • аланин,
  • аргинин,
  • аспарагин,
  • аспарагиновую кислоту,
  • цитруллин,
  • цистеин,
  • гамма-аминомасляную кислоту,
  • глютамовую кислоту,
  • глютамин,
  • глицин,
  • орнитин,
  • пролин,
  • серин,
  • таурин,
  • тирозин.

Процесс синтеза белков постоянно идет в организме. В случае, когда хоть одна незаменимая аминокислота отсутствует, образование белков приостанавливается. Это может привести к самым различным серьезным нарушениям — от расстройств пищеварения до депрессии и замедления роста.

Многие факторы приводят к этому, даже, если ваше питание сбалансировано, и вы потребляете достаточное количество белка. Нарушение всасывания в желудочно-кишечном тракте, инфекция, травма, стресс, прием некоторых лекарственных препаратов, процесс старения и дисбаланс других питательных веществ в организме — все это может привести к дефициту незаменимых аминокислот.

Какие аминокислоты следует принимать?

В настоящее время можно получать незаменимые и заменимые аминокислоты в виде биологически активных пищевых добавок. Это особенно важно при различных заболеваниях и при применении редукционных диет. Вегетарианцам необходимы такие добавки, содержащие незаменимые аминокислоты, чтобы организм получал все необходимое для нормального синтеза белков.

При выборе добавки, содержащей аминокислоты, предпочтение следует отдавать продуктам, содержащим L-кристаллические аминокислоты. Большинство аминокислот существует в виде двух форм, химическая структура одной является зеркальным отображением другой. Они называются D- и L-формами, например D-цистин и L-цистин. D означает dextra (правая на латыни), a L — levo (соответственно, левая). Эти термины обозначают пространственное строение данной молекулы. Белки животных и растительных организмов созданы L-формами аминокислот (за исключением фенилаланина, который представлен D,L- формами). Таким образом, только L-аминокислоты являются биологически активными участниками метаболизма.

Свободные, или несвязанные, аминокислоты представляют собой наиболее чистую форму. Они не нуждаются в переваривании и абсорбируются непосредственно в кровоток. После приема внутрь всасываются очень быстро и, как правило, не вызывают аллергических реакций.

Войдите на сайт, чтобы оставлять комментарии

www.butakova.com

Аминокислоты, суть, польза и вред, аминокислоты в продуктах


Если взять какой-либо продукт – неважно, растительного или животного происхождения, — и «разложить» его на химические составляющие, то его основополагающими компонентами окажутся белки, жиры и углеводы. Последние воспринимаются большинством людей, особенно женщинами, в качестве потенциальной опасности, ведь липиды и сахара – враги фигуры. Зато белкам, известным из курса школьной программы как «строительный материал организма», народ благоволит и включает содержащие их в большом количестве продукты питания в ежедневный рацион. Состоят эти органические компоненты в свою очередь из аминокислот, о которых, кстати говоря, мало что нам известно. Задача сегодняшней статьи – раскрыть их многочисленные тайны.

Суть и классификация аминокислот

Аминокислоты… Они образуют всю живую природу, окружающую нас – флору и фауну. Соединяясь в различные, многочисленные комбинации, составляющие белков формируют по большому счету глобальную часть Мироздания – согласно исследованиям ученых, виды и химическая структура аминокислот абсолютно одинаковы для всего космического пространства. Этот факт позволяет человеку чувствовать себя частицей огромной Вселенной, ее маленькой песчинкой…

Воплотившись в различные сочетания, аминокислоты дают право на существование животным и растительным белкам. Первые более питательны и лучше усваиваются организмом человека, что является прямым доказательством вреда вегетарианства для физического здоровья земного жителя. Причина такого расклада заключается в следующем: мясо животных богато незаменимыми белковыми составляющими – компонентами, не имеющими возможности синтезироваться непосредственно в человеческом организме, и обязанными поэтому поступать в последний извне. Их немного, но все они достаточно важны для нашей жизнедеятельности.

  • Валин – участвует в росте и синтезе тканей, уменьшает чувствительность к боли.
  • Лейцин – укрепляет иммунитет.
  • Треонин — стабилизирует работу желудочно-кишечного тракта и обменные процессы.
  • Метионин – снижает уровень в крови холестерина.
  • Лизин – благодаря ему хорошо усваивается кальций, существенно снижается активность вируса герпес.
  • Фенилаланин – участвует в синтезе гормонов, а также заменимой аминокислоты тирозина.
  • Триптофан – регулирует аппетит, контролирует сон и болевой порог.
  • Изолейцин – участвует в энергетическом обмене.

Аргинин и гистидин, хоть и относятся официально к незаменимым компонентам, на практике являются частично заменимыми, потому что их синтез в теле человека осуществляется очень медленно.

Незаменимые аминокислоты оказывают на организм эффект, сходный с таковым витаминов. Разумеется, недостаток либо полное прекращение снабжения органов тела этими элементами чревато тяжелой болезнью, а в итоге – смертью.

Несколько больше заменимых аминокислот, которые вырабатываются во внутренней среде человеческого организма. Источниками их являются органическое сырье, то есть пища, и предшественники.

  • Глицин – обеспечивает клетки тела кислородом и укрепляет иммунную систему.
  • Аланин – способствует образованию антител, служит источником энергии.
  • Пролин – укрепляет сердце.
  • Серин – «одевает» жировой оболочкой нервные волокна.
  • Цистеин (цистин) – обладает антиоксидантными свойствами, заменяет метионин.
  • Аспарагин – выводит аммиак из организма.
  • Глутамин – стабилизирует уровень сахара в крови, борется с утомляемостью и шизофренией.

К заменимым аминокислотам относят также тирозин, глутамат, аспартат – тоже очень важные по своей функциональности.

Всего в природе насчитывают около 300 белковых составляющих, из которых не меньше 50 «хозяйствуют» в человеческом организме. Но компонентов, непосредственно участвующих в синтезе «строительного материала», только 20 (по другим данным – 21 или 22).

Вред и польза аминокислот

«Атомы» строительного материала организма присутствуют в нашем теле в достаточных количествах. Начать хотя бы с того, что мышцы по своей сути – это 100%-ный белок, а 20% приходится на долю костной и хрящевой тканей. Также из аминокислот состоят:

  • многие гормоны, участвующие в обменных процессах;
  • антитела, повышающие резистентность;
  • ферменты, запускающие и поддерживающие нормальное протекание биохимических реакций;
  • гемоглобин, осуществляющий транспортировку молекул кислорода к клеткам тела.

Разумеется, значение аминокислот для здоровья огромно. Во-первых, они являются превосходным средством наращивания мышечной массы, что успешно используется спортсменами, особенно после интенсивных тренировок, в результате которых коллаген разрушается. Благодаря своим анабиотическим свойствам белковые компоненты стремительно проникают в кровь и спустя 20 минут начинают функционировать в мышечной ткани.

Во-вторых, аминокислоты уничтожают подкожный жир. притупляют аппетит, поэтому пища, содержащая в большом количестве белок, а также специальные биодобавки помогает сбросить лишний вес.

В-третьих, белковые «кирпичики» — не все – являются замечательными антиоксидантами. Иными словами они отвечают за продление молодости и профилактику онкозаболеаний. Такими свойствами обладают в частности таурин, сульфур, аргинин, тирозин.

В-четвертых, аминокислоты поддерживают работу ЦНС и головного мозга, сердечной мышцы и сосудов, почек, костей – то есть всего организма в целом, потому что каждый белковый компонент имеет собственную специализацию.

Вред структурных единиц протеиновых волокон тоже имеет место быть. Так, неправильное употребление незаменимых аминокислот становится причиной пищевого отравления, проблем в сердечной функции. Спортсмены, снизившие количество поступающих в организм белков, способны лишиться в одночасье всей наращенной с помощью «кирпичиков» мышечной массы.

Аминокислоты в продуктах

Составляющие белка присутствуют в любой пище, но если вы хотите заставить их работать на себя, то необходимо включить в рацион лишь виды органического сырья, максимально насыщенные аминокислотами. И упор придется делать на продукты с большим количеством незаменимых компонентов. Рыба, яйца, молоко, сыр, творог, кисломолочные напитки, мясо (куриное) – все они являются превосходными источниками фенилаланина, валина, изолейцина, лизина, триптофана, лейцина и пр. Примерно такой же белковый состав характерен для ряда представителей растительной пищи: круп, орехов, семечек подсолнечника. Легкоусвояемые протеины присутствуют и в обычном мясе, и в морепродуктах, и в бобовых (горох, соя, бобы, чечевица, фасоль), и в картофеле, и в хлебобулочных изделиях, как ни странно. То есть вредная на первый взгляд из-за содержания углеводов пища может оказаться очень полезной с точки зрения наличия в ней белка.

Если «пройтись» по конкретным продуктам питания, выяснятся прелюбопытнейшие факты:

  • овес, пшеница, брокколи, лук и чеснок богаты цистином;
  • лучший источник гистидина – свинина;
  • в мясе нежирных сортов, гречневой крупе более всего содержится метионина, есть он и в овощах;
  • триптофан присутствует в индюшином мясе, молоке, спирулине, пищевых дрожжах;
  • арахис, семечки тыквы, бананы, миндаль являются кладезем тирозина;
  • аланином богаты авокадо, зародыши пшеницы;
  • глицин содержится в холодце, желатине, хрящах.

Если вы решили принимать биодобавки с аминокислотами, проконсультируйтесь прежде с врачом. Самостоятельное их употребление может оказаться совсем небезопасным для вашего здоровья.

Пономаренко Надежда

При использовании и перепечатке материала активная ссылка на женский сайт Woman-Lives.ru обязательна!


www.woman-lives.ru

§17. Аминокислоты. Белки | 10 класс

§17. Аминокислоты. Белки

1. Какие вещества называют аминокислотами, а какие – белками? Что общего между этими классами органических соединений?
Аминокислоты – органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.
Белки – высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединенных в цепочку пептидной связью.
Общее между классами данных веществ: качественный состав. Белки состоят из аминокислот.

2. Почему аминокислоты – амфотерные органические соединения?
В связи с наличием кислотной карбоксильной и основной аминогрупп, аминокислоты относят к амфотерным соединениям. В зависимости от условий они могут реагировать как кислоты или основания.

3. На основе примеров, приведенных в параграфе, попробуйте предложить способ образования названий аминокислот.

4. Какими свойствами обладают аминокислоты? Напишите уравнения реакций, характеризующих химические свойства анилина.

5. Назовите области применения аминокислот.
Производство нейлона, капрона, энанта.
Аминокислоты входят в состав спортивного питания и комбикорма. Аминокислоты применяются в пищевой промышленности в качестве вкусовых добавок, например, натриевая соль глутаминовой кислоты.

6. Охарактеризуйте три структуры белка.

7. Какие химические свойства характерны для белков?
Для белков наиболее характерны реакции гидролиз (разрушение полипептидной цепочки с образованием более простых фрагментов), денатурация (разрушение пространственной структуры белка), ксантопротеиновая и биуретова реакции.

8. Что такое денатурация? Какие внешние факторы могут вызвать ее?
Денатурация – это необратимое разрушение третичной и вторичной структуры белка. Практически любое заметное изменение внешних условий, например, нагревание или существенное изменение pH приводит к последовательному нарушению четвертичной, третичной и вторичной структур белка. Обычно денатурация вызывается повышением температуры, действием сильных кислот и щелочей, солей тяжелых металлов, некоторых растворителей (спирт), радиации и др.

9. Как с помощью одного и того же реактива распознать растворы трех веществ: белка, глюкозы и глицерина?
Гидроксид меди (II). При добавлении к белку дает фиолетовое окрашивание, при сдобавлении к глюкозе и глицерину – синее. Если пробирку с раствором глюкозы нагреть, то происходит обесцвечивание раствора и выпадение красного осадка.

10. Запишите уравнения реакций, с помощью которых можно осуществить следующие превращения:
Этан → этилен → этиловый спирт → уксусный альдегид → уксусная кислота → хлоруксусная кислота → аминоуксусная кислота → полипептид.

11. Вычислите массу соли, которую можно получить при взаимодействии 150 г 5%-го раствора аминоуксусной кислоты с необходимым количеством гидроксида натрия. Сколько граммов 12%-го раствора щелочи потребуется для реакции?


superhimik.ru

Аминокислоты — это… Что такое Аминокислоты?

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 10 апреля 2012.

Аминокисло́ты (аминокарбо́новые кисло́ты) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминные группы.

История

Открытие аминокислот в составе белков

Физические свойства

Аминокислоты — бесцветные кристаллические вещества, хорошо растворимые в воде. Многие из них обладают сладким вкусом.

Общие химические свойства

Все аминокислоты амфотерные соединения, они могут проявлять как кислотные свойства, обусловленные наличием в их молекулах карбоксильной группы  —COOH, так и основные свойства, обусловленные аминогруппой  —NH2. Аминокислоты взаимодействуют с кислотами и щелочами:

NH2 —CH2 —COOH + HCl HCl • NH2 —CH2 —COOH (хлороводородная соль глицина)
NH2 —CH2 —COOH + NaOH H2O + NH2 —CH2 —COONa (натриевая соль глицина)

Растворы аминокислот в воде благодаря этому обладают свойствами буферных растворов, т.е. находятся в состоянии внутренних солей.

NH2 —CH2COOH N+H3 —CH2COO

Аминокислоты обычно могут вступать во все реакции, характерные для карбоновых кислот и аминов.

Этерификация:

NH2 —CH2 —COOH + CH3OH H2O + NH2 —CH2 —COOCH3 (метиловый эфир глицина)

Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона.

Реакция образования пептидов:

HOOC —CH2 —NH —H + HOOC —CH2 —NH2 HOOC —CH2 —NH —CO —CH2 —NH2 + H2O

Изоэлектрической точкой аминокислоты называют значение pH, при котором максимальная доля молекул аминокислоты обладает нулевым зарядом. При таком pH аминокислота наименее подвижна в электрическом поле, и данное свойство можно использовать для разделения аминокислот, а также белков и пептидов.

Цвиттер-ионом называют молекулу аминокислоты, в которой аминогруппа представлена в виде -NH3+, а карбоксигруппа — в виде -COO. Такая молекула обладает значительным дипольным моментом при нулевом суммарном заряде. Именно из таких молекул построены кристаллы большинства аминокислот.

Некоторые аминокислоты имеют несколько аминогрупп и карбоксильных групп. Для этих аминокислот трудно говорить о каком-то конкретном цвиттер-ионе.

Получение

Большинство аминокислот можно получить в ходе гидролиза белков или как результат химических реакций:

CH3COOH + Cl2 + (катализатор) CH2ClCOOH + HCl; CH2ClCOOH + 2NH3 NH2 —CH2COOH + NH4Cl

Все входящие в состав живых организмов α-аминокислоты, кроме глицина, содержат асимметричный атом углерода (треонин и изолейцин содержат два асимметричных атома) и обладают оптической активностью. Почти все встречающиеся в природе α-аминокислоты имеют L-форму, и лишь L-аминокислоты включаются в состав белков, синтезируемых на рибосомах.

Данную особенность «живых» аминокислот весьма трудно объяснить, так как в реакциях между оптически неактивными веществами L и D-формы образуются в одинаковых количествах. Возможно, выбор одной из форм (L или D) — просто результат случайного стечения обстоятельств: первые молекулы, с которых смог начаться матричный синтез, обладали определенной формой, и именно к ним «приспособились» соответствующие ферменты.

D-аминокислоты в живых организмах

Аспарагиновые остатки в метаболически неактивных структурных белках претерпевают медленную самопроизвольную неферментативную рацемизацию: так в белках дентина и эмали зубов L-аспартат переходит в D-форму со скоростью ~0,1 % в год[2], что может быть использовано для определения возраста млекопитающих. Рацемизация остатков аспарагиновой также отмечена при старении коллагена, предполагается, что такая рацемизация специфична для аспарагиновой кислоты и протекает за счет образования сукцинимидного кольца при внутремолекулярном ацилировании пептидного азота свободной карбоксильной группой аспарагиновой кислоты[3].

С развитием следового аминокислотного анализа D-аминокислоты были обнаружены сначала в составе клеточных стенок некоторых бактерий (1966), а затем и в тканях высших организмов. Так, D-аспартат и D-метионин предположительно являются нейромедиаторами у млекопитающих.

В состав некоторых пептидов входят D-аминокислоты, образующиеся при посттрансляционной модификации. Например, D-метионин и D-аланин входят в состав опиоидных гептапептидов кожи южноамериканских амфибий филломедуз (дерморфина, дермэнкефалина и делторфинов). Наличие D-аминокислот определяет высокую биологическую активность этих пептидов как анальгетиков.

Сходным образом образуются пептидные антибиотики бактериального происхождения, действующие против грамположительных бактерий — низин, субтилин и эпидермин.

Гораздо чаще D-аминокислоты входят в состав пептидов и их производных, образующихся путем нерибосомного синтеза в клетках грибов и бактерий. Видимо, в этом случае исходным материалом для синтеза служат также L-аминокислоты, которые изомеризуются одной из субъединиц ферментного комплекса, осуществляющего синтез пептида.

Протеиногенные аминокислоты

В процессе биосинтеза белка в полипептидную цепь включаются 20 α-аминокислот, кодируемых генетическим кодом. Помимо этих аминокислот, называемых протеиногенными, или стандартными, в некоторых белках присутствуют специфические нестандартные аминокислоты, возникающие из стандартных в процессе посттрансляционных модификаций. В последнее время к протеиногенным аминокислотам иногда причисляют трансляционно включаемые селеноцистеин (Sec, U) и пирролизин (Pyl, O). Это так называемые 21-я и 22-я аминокислоты.

Вопрос, почему именно эти 20 аминокислот стали «избранными», остаётся не решённым. Не совсем ясно, чем эти аминокислоты оказались предпочтительнее других похожих. Например, ключевым промежуточным метаболитом пути биосинтеза треонина, изолейцина и метионина является α-аминокислота гомосерин. Очевидно, что гомосерин — очень древний метаболит, но для треонина, изолейцина и метионина существуют аминоацил-тРНК-синтетазы, тРНК, а для гомосерина — нет.

Структурные формулы 20-ти протеиногенных аминокислот обычно приводят в виде так называемой таблицы протеиногенных аминокислот:

Для запоминания однобуквенного обозначения протеиногенных аминокислот используется мнемоническое правило (последний столбец).

Классификация

По радикалу
  • Неполярные: глицин, аланин, валин, изолейцин, лейцин, пролин, метионин, фенилаланин, триптофан
  • Полярные незаряженные (заряды скомпенсированы) при pH=7: серин, треонин, цистеин, аспарагин, глутамин, тирозин
  • Полярные заряженные отрицательно при pH<7: аспартат, глутамат
  • Полярные заряженные положительно при pH>7: лизин, аргинин, гистидин
По функциональным группам
  • Алифатические
    • Моноаминомонокарбоновые: глицин, аланин, валин, изолейцин, лейцин
    • Оксимоноаминокарбоновые: серин, треонин
    • Моноаминодикарбоновые: аспартат, глутамат, за счёт второй карбоксильной группы несут в растворе отрицательный заряд
    • Амиды моноаминодикарбоновых: аспарагин, глутамин
    • Диаминомонокарбоновые: лизин, аргинин, несут в растворе положительный заряд
    • Серосодержащие: цистеин, метионин
  • Ароматические: фенилаланин, тирозин, триптофан, (гистидин)
  • Гетероциклические: триптофан, гистидин, пролин
  • Иминокислоты: пролин
По классам аминоацил-тРНК-синтетаз
  • Класс I: валин, изолейцин, лейцин, цистеин, метионин, глутамат, глутамин, аргинин, тирозин, триптофан
  • Класс II: глицин, аланин, пролин, серин, треонин, аспартат, аспарагин, гистидин, фенилаланин

Для аминокислоты лизин существуют аминоацил-тРНК-синтетазы обоих классов.

По путям биосинтеза

Пути биосинтеза протеиногенных аминокислот разноплановы. Одна и та же аминокислота может образовываться разными путями. К тому же совершенно различные пути могут иметь очень похожие этапы. Тем не менее, имеют место и оправданы попытки классифицировать аминокислоты по путям их биосинтеза. Существует представление о следующих биосинтетических семействах аминокислот: аспартата, глутамата, серина, пирувата и пентоз. Не всегда конкретную аминокислоту можно однозначно отнести к определённому семейству; делаются поправки для конкретных организмов и учитывая преобладающий путь. По семействам аминокислоты обычно распределяют следующим образом:

  • Семейство аспартата: аспартат, аспарагин, треонин, изолейцин, метионин, лизин.
  • Семейство глутамата: глутамат, глутамин, аргинин, пролин.
  • Семейство пирувата: аланин, валин, лейцин.
  • Семейство серина: серин, цистеин, глицин.
  • Семейство пентоз: гистидин, фенилаланин, тирозин, триптофан.

Фенилаланин, тирозин, триптофан иногда выделяют в семейство шикимата.

По способности организма синтезировать из предшественников
  • Незаменимые
    Для большинства животных и человека незаменимыми аминокислотами являются: валин, изолейцин, лейцин, треонин, метионин, лизин, фенилаланин, триптофан, аргинин, гистидин.
  • Заменимые
    Для большинства животных и человека заменимыми аминокислотами являются: глицин, аланин, пролин, серин, цистеин, аспартат, аспарагин, глутамат, глутамин, тирозин.

Классификация аминокислот на заменимые и незаменимые не лишена недостатков. К примеру, тирозин является заменимой аминокислотой только при условии достаточного поступления фенилаланина. Для больных фенилкетонурией тирозин становится незаменимой аминокислотой. Аргинин синтезируется в организме человека и считается заменимой аминокислотой, но в связи с некоторыми особенностями его метаболизма при определённых физиологических состояниях организма может быть приравнен к незаменимым. Гистидин также синтезируется в организме человека, но не всегда в достаточных количествах, потому должен поступать с пищей.

По характеру катаболизма у животных

Биодеградация аминокислот может идти разными путями. По характеру продуктов катаболизма у животных протеиногенные аминокислоты делят на три группы: глюкогенные (при распаде дают метаболиты, не повышающие уровень кетоновых тел, способные относительно легко становиться субстратом для глюконеогенеза: пируват, α-кетоглутарат, сукцинил-KoA, фумарат, оксалоацетат), кетогенные (распадаются до ацетил-KoA и ацетоацетил-KoA, повышающие уровень кетоновых тел в крови животных и человека и преобразующиеся в первую очередь в липиды), глюко-кетогенные (при распаде образуются метаболиты обоих типов).

  • Глюкогенные: глицин, аланин, валин, пролин, серин, треонин, цистеин, метионин, аспартат, аспарагин, глутамат, глутамин, аргинин, гистидин.
  • Кетогенные: лейцин, лизин.
  • Глюко-кетогенные (смешанные): изолейцин, фенилаланин, тирозин, триптофан.

«Миллеровские» аминокислоты

«Миллеровские» аминокислоты — обобщенное название аминокислот, получающихся в условиях, близких к эксперименту Стенли Л. Миллера 1953 года. Установлено образование в виде рацемата множества различных аминокислот, в том числе: глицин, аланин, валин, изолейцин, лейцин, пролин, серин, треонин, аспартат, глутамат

Родственные соединения

В медицине ряд веществ, способных выполнять некоторые биологические функции аминокислот, также (хотя и не совсем верно) называют аминокислотами:

Применение

Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона, энанта.

Аминокислоты входят в состав спортивного питания и комбикорма. Аминокислоты применяются в пищевой промышленности в качестве вкусовых добавок, например, натриевая соль глутаминовой кислоты[4].

Примечания

См. также

Ссылки

Miller S. L. Production of amino acids under possible primitive earth conditions. Science, v. 117, May 15, 1953
Miller S. L. and H. C. Urey. Organic compound synthesis on the primitive earth. Science, v. 130, July 31, 1959
Miller Stanley L. and Leslie E. Orgel. The origins of life on the earth. Englewood Cliffs, NJ, Prentice-Hall, 1974.

  • Общая биология. Учебник для 9 — 10 классов средней школы. Под ред. Ю. И. Полянского. Изд. 17-е, перераб. — М.: Просвещение, 1987. — 288с. [1]
Плазмозамещающие и перфузионные растворы — АТХ код: B05

 

B05A
Препараты крови
B05B
Растворы для в/в введения
B05C
Ирригационные растворы
B05D
Растворы для перитонеального диализа
B05X
Добавки к растворам для в/в введения
B05Z

dic.academic.ru

Про белки и аминокислоты

Про белки и аминокислоты

Белками, или протеинами, называют высокомолекулярные азотсодержащие соединения, состоящие из аминокислот, соединённых в цепочку пептидной связью. Белки синтезируются из аминокислот и превращаются в аминокислоты при переваривании в желудочно-кишечном тракте или катаболизме в организме. Функции белков в клетках живых организмов очень разнообразны — они так или иначе участвуют практически во всех аспектах жизнедеятельности организма.

Природных аминокислот насчитывается около 150, но при синтезе в живых организмах, в большинстве случаев, используется 20 стандартных аминокислот.

С точки зрения питания аминокислоты делят на незаменимые и заменимые.

Незаменимые аминокислоты не синтезируются в организме человека и обязательно должны поступать с пищей. К ним относятся девять аминокислот: валин, лейцин, изолейцин, треонин, метионин, лизин, фенилаланин, триптофан, гистидин. Гистидин относят к незаменимым аминокислотам только для новорожденных. Если количество этих аминокислот в пище недостаточно, нормальное развитие и функционирование организма человека нарушается.

Заменимыми называются аминокислоты, которые организм способен синтезировать из других заменимых аминокислот или азота незаменимых аминокислот. К ним относятся остальные 11 аминокислот.

Определенное количество заменимых аминокислот также должно поступать с пищей, иначе на их образование станут расходоваться незаменимые аминокислоты. Полностью метаболически заменимыми считаются только глутаминовая кислота и серин.

Классификация аминокислот на заменимые и незаменимые также не лишена недостатков, например тирозин является заменимой аминокислотой только при условии достаточного поступления фенилаланина. Аргинин синтезируется в организме человека и считается заменимой аминокислотой, но в связи с некоторыми особенностями его метаболизма при определённых физиологических состояниях организма может быть приравнен к незаменимым. Гистидин также синтезируется в организме человека, но не всегда в достаточных количествах, потому должен поступать с пищей.

Современные данные свидетельствуют о том, что биосинтез заменимых аминокислот в количествах, обеспечивающих полностью потребности организма чаще всего невозможен, поэтому следует помнить, что незаменимые и заменимые аминокислоты в равной степени важны для построения белков организма.

Аминокислоты, составляющие белки тела и пищи

Незаменимые аминокислоты
(эссенциальные)

Заменимые аминокислоты

Изолейцин
Лейцин
Лизин
Метионин
Фенилаланин
Треонин
Триптофан
Валин
Гистидин

Глицин
Глутаминовая аминокислота
Аргинин
Аспарагиновая аминокислота
Пролин
Аланин
Серин
Тирозин
Цистеин
Аспарагин
Глутамин

Свойства белков определяются набором аминокислот, из которых они состоят, общим числом аминокислот и последовательностью, в которой они соединяются друг с другом. Комбинация из 20 аминокислот, каждая из которых может встречаться в белке сколько угодно раз, позволяет создавать практически неограниченное количество уникальных белковых молекул. Организм человека содержит, по меньшей мере, 30 000 различных белков, только в печени насчитывается более 1000 белков-ферментов.

Функции белка

Белки являются обязательными компонентами всех живых клеток. Одна пятая часть тела человека состоит из белка. Белок содержится практически во всех органах и тканях. Только моча и желчь в норме не содержат белка. Половина всего белка находится в мышцах, 1/5 — в костях и хрящах, 1/10 — в коже. Волосы, кожа, ногти также содержат белок кератин. Этот белок не переваривается и не усваивается в кишечнике.

Биологические функции белков крайне разнообразны. С участием белков осуществляются рост и размножение клеток. Они выполняют каталитические (ферменты), регуляторные (гормоны), структурные (коллаген), сократительные (миозин), транспортные (гемоглобин, миоглобин), защитные (иммуноглобулины, интерферон), запасные (альбумин) и другие функции. Белки составляют основу биологических клеточных мембран — важнейшей составной части клетки и клеточных органелл.

При участии белков регулируется и поддерживается нормальный водный баланс организма, сохраняются нормальные рН среды. Белки крови создают онкотическое давление, которое удерживает жидкость в кровеносных сосудах и препятствует накоплению жидкости во внеклеточном пространстве. При сниженном уровне белков в плазме крови онкотическое давление не уравновешивает осмотическое давление, которое выталкивает жидкость из сосудов. Это приводит к развитию отеков (т.н. «голодные отеки»).

Оценка качества пищевых белков

В пищеварительном тракте белки расщепляются до аминокислот, которые всасываются и используются на образование новых белков организма либо расходуются на получение энергии, либо аминокислоты являются предшественниками для образования новых заменимых аминокислот. Качество пищевого белка определяется наличием в нем полного набора незаменимых аминокислот в определенном количестве и в определенном соотношении с заменимыми аминокислотами.

Качество пищевого белка оценивается рядом биологических и химических методов:

  • Оценка биологической ценности белка
    Под биологической ценностью белка (или содержащей белок пищи) подразумевают долю усвоенного организмом азота от всего всосавшегося в ЖКТ азота. Измерение биологической ценности белка основывается на том, что усваивание азота организмом выше при адекватном содержании незаменимых аминокислот в пищевом белке, достаточном для поддержания роста организма.
  • Коэффициент эффективности белка
    Показатель коэффициента эффективности белка основан на предположении, что прирост массы тела растущих животных пропорционален количеству потребленного белка.
  • Аминокислотный скор белка
    Аминокислотный скор – это показатель отношения определенной незаменимой аминокислоты в каком-то продукте к такой же аминокислоте в «идеальном» белке. Рассчитывается аминокислотный скор путем деления количества определенной незаменимой аминокислоты в продукте на количество такой же аминокислоты в идеальном белке. Полученные данные затем умножают на 100 и получают аминокислотный скор исследуемой аминокислоты.

    Понятие «идеальный» белок включает представление о гипотетическом белке высокой пищевой ценности, полностью удовлетворяющем потребность организма человека в незаменимых аминокислотах. Для взрослого человека в качестве «идеального» белка применяют аминокислотную шкалу Комитета ФАО/ВОЗ. Аминокислотная шкала показывает содержание каждой из незаменимых аминокислот в 100 г стандартного белка.

    Наиболее близки к «идеальному» белку животные белки мяса, яиц и молока. Большинство растительных белков содержат недостаточное количество одной или нескольких незаменимых аминокислот. Например, белки злаковых культур, а также полученные из них продукты неполноценны (лимитированы) по лизину и треонину. Белки ряда бобовых культур (соя и фасоль исключение) лимитированы по метионину и цистеину (60-70% оптимального количества).

В процессе тепловой обработки или длительного хранения продуктов из некоторых аминокислот могут образоваться не усвояемые организмом соединения, т.е. аминокислоты становятся «недоступными». Это снижает ценность белка.

Пищевая ценность белков может быть улучшена (т.е. увеличена биологическая ценность или аминокислотный скор по лимитирующим кислотам) путем добавления лимитирующей аминокислоты или внесения компонента с ее повышенным содержанием, или путем смешивания белков с различными лимитирующими аминокислотами. Так, биологическая ценность белка пшеницы может быть повышена добавлением 0,3-0,4% лизина, белка кукурузы — 0,4% личина и 0,7% триптофана. Приготовление смешанных блюд, содержащих животные и растительные продукты, способствует получению полноценных пищевых белковых композиций.

Переваривание белков и всасывание аминокислот

Все пищевые белки, состоящие из длинной цепи аминокислот, не способны всасываться в желудочно-кишечном тракте. Они расщепляются на свободные аминокислоты или фрагменты, состоящие из 2 или 3 аминокислот. Расщепление белков катализируют специфические пищеварительные ферменты — протеазы. Степень перевариваемости белков колеблется от 65% для некоторых растительных белков до 97% для белка яиц.

Свободные аминокислоты всасываются в кровоток и транспортируются в органы и ткани, в первую очередь в печень. Наибольшее количество аминокислот захватывается печенью, где синтезируются белки плазмы крови и специфические белки-ферменты. Аминокислоты, не участвующие в биосинтезе новых белковых молекул, подвергаются в печени процессу дезаминирования, т.е. отщеплению аминогруппы. В процессах дезаминирования участвуют активные формы витамина В6.

Азотсодержащий остаток аминокислот превращается в мочевину и экскретируется с мочой. Не содержащая азота часть молекулы аминокислот превращается в углеводы или жиры и окисляется для образования энергии или запасается в виде жира.

Коэффициент перевариваемости белков пищи у человека

ПродуктыКоэффициент перевариваемости, %
Яйца97
Молоко, сыры95
Мясо, рыба94
Кукуруза85
Полированный рис88
Цельное зерно пшеницы86
Мука пшеничная96
Крупа манная99
Овсяные хлопья86
Просо79
Горох зрелый88
Бобы78

Потребность организма в белке

В организме человека отсутствует большое депо для запасания белков. Отчасти функцию депо выполняют белки плазмы крови и печени. Альбумин плазмы крови служит лабильным резервом белка, и для обеспечения жизненно необходимой потребности в аминокислотах происходит его расщепление. Глобулины плазмы крови не подвергаются расщеплению даже при истощении запасов альбумина.

Животные и растительные белки усваиваются организмом неодинаково. Если белки молока, молочных продуктов, яиц усваиваются на 96%, мяса и рыбы — на 93-95%, то белки хлеба — на 62-86%, овощей — на 80%, картофеля и некоторых бобовых — на 70%.

Однако смесь этих продуктов может быть биологически более полноценной в силу взаимного обогащения одних белков аминокислотами других.

На степень усвоения организмом белков оказывают влияние технология получения пищевых продуктов и их кулинарная обработка. Анализируя воздействие различных видов обработки пищевого сырья и продуктов (измельчение, действие температуры, брожение и т.д.) на усвояемость содержащихся в них белков, следует отметить, что в большинстве пищевых производств при соблюдении технологии не происходит деструкции аминокислот. При умеренной тепловой обработке пищевых продуктов, особенно растительного происхождения, усвояемость белков несколько возрастает, так как частичная денатурация белков облегчает доступ протеаз к пептидным связям. При интенсивной тепловой обработке усвояемость снижается. При глубоком жареньи с образованием корочки и обугливании часть аминокислот разрушается или снижается усвоение белка из этих частей блюда или продукта.

Потребность в белке — это количество белка, которое обеспечивает все метаболические потребности организма. При этом обязательно учитывается, с одной стороны, физиологическое состояние организма, а с другой — свойства самих пищевых белков и пищевого рациона в целом. От свойств компонентов пищевого рациона зависят переваривание, всасывание и метаболическая утилизация аминокислот.

Потребность в белке состоит из двух компонентов. Первый должен удовлетворить потребность в общем азоте, обеспечивающем биосинтез заменимых аминокислот и других азотсодержащих эндогенных биологически активных веществ. Собственно потребность в общем азоте и есть потребность в белке. Второй компонент потребности в белке определяется потребностью организма человека в незаменимых аминокислотах, которые не синтезируются в организме. Это специфическая часть потребности в белке, которая количественно входит в первый компонент, но предполагает потребление белка определенного качества, т.е. носителем общего азота должны быть белки, содержащие незаменимые аминокислоты в определенном количестве.

Потребность в незаменимых аминокислотах в различном возрасте мг/кг в сутки

АминокислотаДети раннего возраста
(3-4 мес.)
Дети
(от двух лет)
Подростки
(10 лет и старше)
Взрослые
Гистидин288-12
Изолейцин70312810
Лейцин161734414
Лизин103644414
Метионин + цистеин58272213
Фенилаланин + тирозин125692214
Треонин8737287
Триптофан1712,53,33,5
Валин93382510
Всего незаменимых аминокислот71435221684

 

crohn-fight.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *