Содержание

Мышечная система человека. Все, что надо знать

И снова здравствуйте! На связи все те же и все там же :). В эту пятницу мы продолжим свой эпический цикл заметок. И следующая тема к рассмотрению «Мышечная система человека». По прочтении вы узнаете, что она собой представляет, как работает и что с происходит с мышцами во время выполнения упражнений.

Итак, занимайте свои места в зрительном зале, мы начинаем.

Мышечная система человека: что, к чему и почему?

На протяжении всего апреля и мая мы рассказываем вам про системы человека. На текущий момент разобрали: сердечно-сосудистую, пищеварительную, нервную, лимфатическую, иммунную и эндокринную системы. Если вы к нам только что присоединились, то изучите сначала указанные заметки, и только потом переходите к нашей новой теме. Статья обещает быть, не в пример предыдущим, простой и понятной, а все потому, что про мышцы мы уже в свое время многое сказали. И сегодня нам останется все вспомнить и подвести общий знаменатель. Что же, давайте приступим к вещанию.

Примечание:
Для лучшего усвоения материала все дальнейшее повествование будет разбито на подглавы.

“Анатомия” мышечной системы

Мышечная система — это сеть тканей организма, которая контролирует движения тела и внутри него. Движение создается за счет сокращения и расслабления определенных мышц. Мышцы подразделяются на два основных класса: скелетные (произвольные) и гладкие (непроизвольные).

Скелетные мышцы прикрепляются к скелету и движутся различными частями тела. Их называют добровольными, потому что человек контролирует их использование, например, при сгибании руки или подъеме ноги. В теле человека насчитывается около 650 скелетных мышц. Анатомический атлас основных из них представляет собой такую картину (кликабельно):

Гладкие мышцы находятся в стенках желудка и кишечника, стенок вен и артерий, а также в различных внутренних органах. Их называют непроизвольными мышцами, потому что человек обычно не может их сознательно контролировать. Они регулируются вегетативной нервной системой. Еще одно различие между скелетными и гладкими мышцами заключается в том, что скелетные мышцы состоят из волокон ткани, которые имеют полосатую бороздчатую структуру. Эти чередующиеся полосы света и темноты являются результатом рисунка волокон (нитей) в каждой мышечной клетке. Гладкие мышечные волокна не исчерчены.

Сердечная (миокард) — уникальный тип мышц, который не относится ни к одному из двух классов мышц. Как скелетные мышцы, миокард является поперечной. Но, как и гладкие мышцы, он непроизвольно контролируются вегетативной нервной системой:

Давайте кратко разберем гладкие и сердечную мышцы и максимально подробно скелетные.

№1. Гладкие мышцы

Гладкие мышечные волокна выстилают большую часть внутренних полых органов тела. Они помогают перемещать вещества через кровеносные сосуды и тонкий кишечник. Гладкие мышцы сокращаются автоматически, спонтанно и часто ритмично. Они сокращаются медленнее, чем скелетные мышцы, однако могут оставаться сокращенными более продолжительное время.

Подобно скелетным мышцам, гладкие мышцы сокращаются в ответ на высвобождение нейротрансмиттеров, релизуемых нервами. В отличие от скелетных мышц, некоторые гладкие мышцы сокращаются после стимуляции гормонами. Примером является окситоцин — гормон, выделяемый гипофизом. Он стимулирует сокращение гладких мышц матки во время родов. Гладкие мышцы не так зависимы от кислорода, как скелетные мышцы, они используют углеводы для выработки большей части своей энергии.

№2. Сердечная мышца

При средней продолжительности жизни человека 65-70 лет, миокард за этот период сокращается более чем 2,5 млрд. раз. Как и скелетные мышцы, миокард является поперечно-полосатым. Однако волокна миокарда меньше и короче волокон скелетных мышц. Сокращения миокарда стимулируются импульсом, исходящим из небольшого скопления (узла) — специализированной ткани в верхней правой части сердца. Импульс распространяется через верхнюю область сердца, заставляя ее сокращаться. Этот импульс также достигает другого узла, расположенного вблизи нижней правой области сердца. После получения начального импульса второй узел запускает свой собственный импульс, в результате чего нижняя область сердца несколько сокращается следом за верхней областью. Другими словами, миокард стимулирует к сокращению сам себя, гормоны и сигналы мозга регулируют лишь скорость сокращения.

Клетки сердечной мышцы представляют собой разветвленные X или Y-образные клетки, плотно соединенные между собой специальными соединениями, называемыми интеркалированными дисками. Интеркалированные диски состоят из пальцевидных выступов двух соседних клеток, которые сцепляются и обеспечивают прочную связь между клетками. Разветвленная структура и интеркалированные диски позволяют мышечным клеткам противостоять высокому кровяному давлению и перекачиванию крови на протяжении всей жизни. Эти функции также помогают быстро распространять электрохимические сигналы от клетки к клетке, чтобы сердце могло биться как единое целое.

На очереди…

№3. Скелетные мышцы

Разберем как вопросы анатомии, так и управление мышцами и иннервации мышечных волокон.

№3.1 Общая анатомия

Составляют около 40% массы тела. Они стабилизируют суставы, помогают поддерживать осанку и придают телу общую форму. Используют много кислорода и питательных веществ из кровоснабжения. Скелетные мышцы способствуют поддержанию гомеостаза в организме, выделяя тепло. Мышечное сокращение требует энергии, и когда АТФ разрушается, выделяется тепло. Это тепло проявляет себя во время физических упражнений, когда устойчивые движения мышц вызывают повышение температуры тела.

Каждая скелетная мышца представляет собой орган, состоящий из различных интегрированных тканей. Эти ткани включают волокна скелетных мышц, кровеносные сосуды, нервные волокна и соединительную ткань. Каждая скелетная мышца имеет три слоя соединительной ткани (называемой «мизия»), которая охватывает ее и обеспечивает структуру мышцы в целом, а также разделяет мышечные волокна внутри мышцы.

Каждая мышца обернута в плотную соединительную ткань, называемую эпимизией, которая позволяет мышце сокращаться и мощно двигаться, сохраняя при этом свою структурную целостность. Эпимизия также отделяет мышцу от других тканей и органов, что позволяет мышце двигаться самостоятельно.

Внутри каждой скелетной мышцы мышечные волокна организованы в отдельные пучки средним слоем соединительной ткани — перимизиумом. Эта фасцикулярная организация распространена в мышцах конечностей, что позволяет нервной системе запускать определенное движение мышцы, активируя подмножество мышечных волокон в пучке. Внутри каждого пучка каждое мышечное волокно заключено в тонкий слой соединительной ткани из коллагена и ретикулярных волокон, называемый эндомизием. Эндомизий содержит внеклеточную жидкость и питательные вещества для поддержки мышечного волокна. Эти питательные вещества поступают через кровь к мышечной ткани.

Скелетные мышцы прикрепляются к костям с помощью жесткой волокнистой соединительной ткани, называемой сухожилиями. Сухожилия богаты коллагеном, который может растягиваться и обеспечивать дополнительную длину в соединении мышц и костей.

Скелетные мышцы действуют парами. Мышца, которая производит конкретное движение тела, известна как агонист — первичный двигатель. Агонист всегда соединяется с мышцей-антагонистом, которая оказывает противоположный эффект. Сгибание (сокращение) одной мышцы уравновешивается удлинением (расслаблением) ее парной мышцы или группы мышц. Эти антагонистические (противоположные) мышцы могут открывать и закрывать суставы. Примером антагонистических мышц являются бицепс и трицепс. Когда мышца бицепса сгибается, предплечье сгибается в локте к бицепсу, в то же самое время мышца трицепса удлиняется. Когда предплечье согнуто назад в положении прямой руки, бицепс удлиняется, а трицепс сгибается.

Мышцы, которые сокращаются и приводят к закрытию сустава, называются мышцами-сгибателями. Мышцы, которые сокращаются и приводят к открытию сустава, называются экстензорами. Скелетные мышцы, поддерживающие череп, позвоночник и грудную клетку, называются осевыми скелетными мышцами. Скелетные мышцы конечностей называются дистальными скелетными мышцами.

Синергисты — это мышцы, которые помогают стабилизировать и уменьшить посторонние движения. Они обычно находятся рядом с мышцами-агонистами и часто соединяются с теми же костями. Если вы поднимаете что-то тяжелое руками, фиксаторы в области туловища удерживают ваше тело в вертикальном положении неподвижно, так что вы сохраняете равновесие во время подъема.

При выполнении какого-либо движения в работу включаются до пяти групп мышц: агонисты, антагонисты, синергисты, стабилизаторы и нейтрализаторы. Например, во время жима штанги трицепс и передняя дельта выступают в роли синергистов (бицепс в роли динамического стабилизатора), а при выполнении отведения руки назад с гантелью в наклоне, бицепс и трицепс являются антагонистами.

Волокна скелетных мышц подразделяются на быстрые и медленные в зависимости от характера их деятельности. Быстрые (белые) мышечные волокна быстро сокращаются, имеют плохое кровоснабжение, работают без кислорода и быстро устают. Медленные (красные) мышечные волокна сокращаются медленнее, имеют лучшее кровоснабжение, используют кислород и более выносливые. Медленные мышечные волокна используются в постоянных движениях, например, для поддержания осанки.

Полосатый внешний вид волокон скелетных мышц обусловлен расположением миофиламентов актина и миозина в последовательном порядке от одного конца мышечного волокна к другому. Каждый пакет этих микрофиламентов и их регуляторные белки, тропонин и тропомиозин (наряду с другими белками), называется саркомером (см. изображение, кликабельно):

Саркомер является функциональной единицей мышечного волокна. Сам саркомер входит в состав миофибрилл, которые проходят по всей длине мышечного волокна и прикрепляются к сарколемме на его конце. Когда миофибриллы сокращаются, сокращается вся мышечная клетка. Каждый саркомер имеет длину приблизительно 2 мкм с трехмерным цилиндрическим расположением и граничит со структурами, называемыми Z-дисками (также называемыми Z-линиями), к которым прикреплены актиновые миофиламенты. Поскольку актин и его тропонин-тропомиозиновый комплекс образуют нити, которые тоньше миозина, его называют тонкой нитью саркомера. Аналогичным образом, поскольку нити миозина и их многочисленные головки имеют большую массу и толще, их называют толстой нитью саркомера.

№3.2  Нервно-мышечный узел

Волокна скелетных мышц стимулируются электрическими импульсами нервной системы. Нервы простираются наружу от спинного мозга, чтобы соединиться с мышечными клетками. Область, где соединяются мышца и нерв, называется мионевральным соединением. Когда от мозга в мышцу поступает определенное указание, нерв высвобождает химическое вещество, называемое нейротрансмиттером, которое пересекает микроскопическое пространство между нервом и мышцей, и заставляет мышцу сокращаться.

Каждая скелетная мышца также богато снабжается кровеносными сосудами для питания, доставки кислорода и удаления отходов. Кроме того, каждое мышечное волокно в скелетной мышце снабжается аксонной ветвью соматического двигательного нейрона, которая сигнализирует о сокращении волокна:

Место, где терминал моторного нейрона встречается с мышечным волокном, называется нервно-мышечным соединением (НМС). Именно здесь мышечное волокно впервые реагирует на передачу сигналов двигательным нейроном. Каждое скелетное мышечное волокно в каждой скелетной мышце иннервируется моторным нейроном в НМС. Сигналы возбуждения от нейрона — единственный способ функционально активировать волокно, чтобы его сжать.

Собственно, по анатомии скелетных мышц это все.

Чтобы у вас сложилась целостная картина по всем трем типам мышц,, приведем следующую сводную таблицу:

Итак, с анатомической теорией разобрались переходим к двигательной.

Мышечная система человека: как работают мышцы

Начнем с…

№1. Скелетные мышцы и рычаги

Скелетные мышцы работают вместе с костями и суставами, образуя рычажные системы. Мышца действует как сила усилия, сустав как точка опоры, кость как рычаг, а перемещаемый объект как нагрузка. Существует три класса рычагов: первый, второй и третий. Однако подавляющее большинство рычагов тела человек — рычаги третьего рода.

Рычаг третьего рода — система, в которой точка опоры (А) находится на конце рычага, а усилие (F) находится между точкой опоры и нагрузкой (R) на другом конце рычага. В качестве примера можно привести копку лопатой. Земля обеспечивает сопротивление, когда вы втыкаете конец лопаты в землю. Сила генерируется при подъёме средней части ручки. Ваша другая рука обеспечивает ось на другом конце лопаты:

Рычаги третьего рода имеют наибольшее распространение в теле человека и представлены мышцами, сгибающими конечности в суставах. Так, например, локтевой сустав является осью, а двуглавая мышца плеча и плечевая мышца, расположенные дистально, обеспечивают силу. Сопротивлением является вес предплечья и предмета, удерживаемого в руке.

Рычаги третьего рода в теле служат для увеличения расстояния, перемещаемого под нагрузкой. “Платой” за это увеличение расстояния является то, что усилие, необходимое для перемещения груза, должно быть больше, чем масса груза. Например, бицепс плеча тянется по радиусу предплечья, вызывая сгибание в локтевом суставе в системе рычагов третьего рода. Очень незначительное изменение длины бицепса вызывает гораздо большее движение предплечья и кисти, но сила, прилагаемая бицепсом, должна быть выше, чем нагрузка, перемещаемая мышцей.

№2. Скелетные мышцы и мотонейроны

Нервные клетки, называемые моторными нейронами, контролируют скелетные мышцы. Каждый двигательный нейрон контролирует несколько мышечных клеток в группе, известной как двигательная единица. Когда моторный нейрон получает сигнал от мозга, он одновременно стимулирует все клетки мышц в своей двигательной единиц:

Размер двигательных единиц варьируется по всему телу в зависимости от функции мышцы. Мышцы, выполняющие мелкие движения, например, движения глаз или пальцев, имеют очень мало мышечных волокон в каждой двигательной единице, чтобы повысить точность контроля мозга над этими структурами. Мышцы, которым требуется много сил для выполнения своих функций, например, мышцы ног или рук, содержат много мышечных клеток в каждой двигательной единице. Один из способов, которыми тело может контролировать силу каждой мышцы, это определить, сколько двигательных единиц нужно активировать для данной функции. Это объясняет, почему те же самые мышцы, которые используются, чтобы поднять карандаш, также используются, чтобы поднять шар для боулинга.

№3. Скелетные мышцы и сокращения

Мышцы сокращаются, когда стимулируются сигналами от их двигательных нейронов. Моторные нейроны контактируют с мышечными клетками в точке, называемой нервно-мышечным соединением (НМС). Моторные нейроны высвобождают нейротрансмиттерные химические вещества в НМС, которые связаны со специальной частью сарколеммы, известной как концевая пластина двигателя. Концевая пластина двигателя содержит множество ионных каналов, которые открываются в ответ на нейротрансмиттеры и позволяют положительным ионам проникать в мышечное волокно. Положительные ионы образуют электрохимический градиент, чтобы сформироваться внутри клетки, которая распространяется по сарколемме и Т-канальцам, открывая еще больше ионных каналов. Когда положительные ионы достигают саркоплазматического ретикулума, ионы Ca2 + высвобождаются и пропускаются в миофибриллы. Ионы Ca2 + связываются с тропонином, что приводит к изменению формы молекулы тропонина и перемещению соседних молекул тропомиозина. Тропомиозин удаляется от мест связывания миозина на молекулах актина, что позволяет актину и миозину связываться друг с другом:

Молекулы АТФ приводят в действие белки миозина в толстых нитях, чтобы изгибаться и притягивать молекулы актина в тонких нитях. Белки миозина действуют как весла на лодке, притягивая тонкие нити ближе к центру саркомера. Когда тонкие нити стянуты вместе, саркомер укорачивается и сжимается. Миофибриллы мышечных волокон состоят из множества саркомеров подряд, так что, когда все саркомеры сокращаются, мышечные клетки сокращаются с большой силой относительно их размера.

Мышцы продолжают сокращаться до тех пор, пока они стимулируются нейротрансмиттером. Когда моторный нейрон останавливает высвобождение нейротрансмиттера, процесс сокращения начинает меняться. Кальций возвращается в саркоплазматический ретикулум, тропонин и тропомиозин возвращаются в исходное положение, а актин и миозин защищены от связывания. Саркомеры возвращаются в свое удлиненное состояние покоя, как только сила миозина прекращает натягивать нити актина.

№4. Скелетные мышцы и типы сокращений

Сила сокращения мышц может контролироваться двумя факторами: количеством двигательных единиц, участвующих в сокращении, и количеством стимулов со стороны нервной системы. Один нервный импульс двигательного нейрона заставит моторную единицу кратковременно сжаться, прежде чем расслабиться. Это небольшое сокращение известно как контракция. Если моторный нейрон выдает несколько сигналов в течение короткого периода времени, сила и продолжительность сокращения мышц увеличивается. Это явление известно как временное суммирование.

Если двигательный нейрон дает много нервных импульсов в быстрой последовательности, мышца может войти в состояние столбняка (тетанус) или полного и длительного сокращения. Она будет в нем оставаться до тех пор, пока скорость нервного сигнала не уменьшится или пока мышца не станет слишком утомленной, чтобы поддерживать состояние столбняка.

Не все сокращения мышц вызывают движение. Изометрические сокращения — легкие сокращения, которые увеличивают напряжение в мышце, не прикладывая достаточных усилий для перемещения части тела. Когда люди напрягают свое тело из-за стресса, они выполняют изометрическое сокращение. Удержание объекта или определенной позы также являются результатом изометрических сокращений. Сокращение, которое производит движение, является изотоническим сокращением. Изотонические сокращения необходимы для развития мышечной массы путем поднятия тяжестей:

Тонус мышц является естественным состоянием, при котором скелетная мышца остается частично сокращенной на протяжении всего времени. Мышечный тонус обеспечивает небольшое напряжение в мышцах, чтобы предотвратить повреждение мышц и суставов от внезапных движений, а также помогает поддерживать осанку. Все мышцы постоянно поддерживают определенный мышечный тонус, если только мышцы не были “отключены” от центральной нервной системы из-за повреждения нерва.

№5. Скелетные мышцы: метаболизм и усталость

Мышцы получают энергию из разных источников в зависимости от ситуации, в которой они работают. Мышцы используют аэробное дыхание, когда мы прикладываем к ним низкий или умеренный уровень силы. Аэробное дыхание требует кислорода, чтобы произвести около 36-38 молекул АТФ из молекулы глюкозы. Аэробное дыхание очень эффективно и может продолжаться до тех пор, пока мышцы получают достаточное количество кислорода и глюкозы, чтобы продолжать сокращаться.

Когда мы используем мышцы для создания высокого уровня силы, они настолько сильно сокращаются, что кровь, несущая кислород, не может попасть в мышцу. Это условие заставляет их создавать энергию с помощью молочнокислого брожения — формы анаэробного дыхания. Анаэробное дыхание намного менее эффективно, чем аэробное дыхание: для каждой молекулы глюкозы вырабатывается только 2 молекулы АТФ. Мышцы быстро устают, поскольку они сжигают свои запасы энергии при анаэробном дыхании. Чтобы мышцы работали в течение более длительного периода времени, мышечные волокна содержат несколько важных энергетических молекул. Миоглобин, красный пигмент, обнаруженный в мышцах, содержит железо и накапливает кислород в крови подобно гемоглобину. Кислород из миоглобина позволяет мышцам продолжать аэробное дыхание в отсутствие кислорода.

Еще одним химическим веществом, которое помогает поддерживать работоспособность мышц, является креатин-фосфат. Мышцы используют энергию в форме АТФ, превращая АТФ в АДФ, чтобы высвободить свою энергию. Креатинфосфат отдает свою фосфатную группу АДФ, чтобы превратить его обратно в АТФ, чтобы обеспечить дополнительную энергию для мышц. Когда у мышц заканчивается энергия во время аэробного или анаэробного дыхания, мышца быстро утомляется и теряет способность сокращаться. Это состояние известно как мышечная усталость. Утомленная мышца содержит очень мало или совсем не содержит кислорода, глюкозы или АТФ, но вместо этого содержит много продуктов жизнедеятельности: молочная кислота и АДФ.

Тело должно принимать дополнительный кислород после нагрузки, чтобы заменить кислород, который накапливался в миоглобине в мышечном волокне, а также для стимулирования аэробного дыхания, которое восстановит запасы энергии внутри клетки. Кислородный долг (или поглощение кислорода для восстановления) — название дополнительного кислорода, который организм должен принимать, чтобы восстановить мышечные клетки до состояния покоя. Это объясняет, почему вы чувствуете одышку в течение нескольких минут после напряженной деятельности, просто ваше тело пытается восстановить свое нормальное состояние.

С двигательной теорией все. Теперь давайте выясним…

Какое влияние оказывают тренировки, упражнения на мышечную систему

Для мышечной системы упражнения имеют как краткосрочные, так и долгосрочные последствия. Упражнения работают как стимул и “вгоняют” мышцы в стрессовое состояние. После тренировки вы можете ощутить на себе следующие кратковременные эффекты:

  • усиление кровотока из-за увеличенного объема крови, которая перекачивается в мышечную ткань;
  • мышечная усталость. Снижение способности мышц генерировать силу;
  • мышечное истощение. Полное или близкое к этому состоянию исчерпание резервов мышцы. Невозможность выполнения мускулом заданной работы;
  • мышечные повреждения. Травмирование мышечных волокон (микроразрыв, микротравма);
  • прочее: судороги, озноб, повышение температуры тела.

…и долгосрочные:

  • улучшение состава тела. Регулярные тренировки, вкупе с правильным питанием, приводят к уменьшению процента подкожной-жировой клетчатки и увеличению процента сухой мышечной массы;
  • увеличение размера мышц и их силы. Регулярные тренировки определенных мышц могут увеличить их размер до 60%; Увеличение мышечной массы обусловлено, главным образом, увеличением диаметра отдельных мышечных волокон;
  • улучшение координации мышц. Каждая тренировка вносит свой вклад в повышение стабильности выполнения упражнений и отключение нецелевых мышц;
  • повышение общей выносливости;
  • развитие сердечно-сосудистой системы. Увеличивается количество кровеносных сосудов и расширяется капиллярное русло. Мышцы эффективнее получают питательные вещества и кислород. Миокард становится более тренированным, что  обеспечивает устойчивое кровяное давление в повседневной жизни;
  • увеличение скорости метаболизма, обмена веществ;
  • биохимические изменения: 1) увеличение энергетической емкости организма. Это происходит вследствие увеличения размера и количества митохондрий – энергетических клеток-станций; 2) увеличение скорости метаболизма; 3) увеличение окисления жирных кислот;
  • улучшение гормонального фона (в т.ч. повышение либидо);
  • омоложение организма, повышение качеств его регенеративных функций;
  • прочее: повышение мышечного тонуса, скорости реакции, гибкости и т.д.

Ну, и последнее на сегодня это…

Лучшие силовые упражнения для мышечной системы

Электромиография позволяет достаточно точно определить, какое упражнение является лучшим для той или иной мышечной группы. Проанализировав отчеты различных исследователей, представляем вашему вниманию следующий список из лучших упражнений:

  • грудные: жим штанги лежа, отжимания на брусьях, сведение рук в тренажере кроссовер;
  • спина: подтягивания на турнике, становая тяга с плинтов, тяга Т-грифа;
  • плечи: армейский жим сидя, разведение рук стоя с гантелями, обратные разведения в тренажере;
  • бицепс: концентрированный подъем на бицепс, сгибания рук с гантелью сидя на скамье под углом вверх;
  • трицепс: жим штанги узким хватом, обратные отжимания м/у скамьями;
  • квадрицепс: приседания со штангой на груди, выпады с гантелями, гакк-приседания;
  • бицепс бедра: румынская становая тяга со штангой, упражнение доброе утро, сгибание ног лежа;
  • пресс: скручивания лежа на фитболе, скручивания с верхнего блока, упражнение велосипед.

Помимо озвученных упражнений обратите внимание на упражнения-связки: подъем гантелей на бицепс + жим гантелей вверх, приседания со штангой + армейский жим и пуловер со штангой лежа на скамье + жим штанги. Стройте свою программу тренировок вокруг этих упражнений, и ваша мышечная система всегда будет в хорошем тонусе.

Собственно, по содержательной части это все. Подытожим.

Послесловие

3300 слов – именно столько нам потребовалось, чтобы раскрыть тему мышечной системы человека. И мы довольны проделанной работой. А довольны ли наши уважаемые читатели? Скоро узнаем. А пока -пока!

PS. ухватили чего? Чего ухватили? 🙂

PPS. Спортивное питание европейского качества со скидкой 40%. Не упустите возможность выгодно закупиться на 2019! Скидочная ссылка http://bit.ly/AZBUKABB

Cкачать статью в pdf>>

С уважением и признательностью, Протасов Дмитрий.

ferrum-body.ru

Мышечная система человека — Знаешь как

Содержание статьи

Общие сведения о мышцах. В организме человека насчитывается около 600 скелетных мышц (цвет. табл. III, IV). Мышечная система составляет значительную часть общей массы тела человека. Если у новорожденных масса всех мышц составляет 23% массы тела, а в 8 лет — 27%, то в 17—18 лет она достигает 43—44%, а у спортсменов с хорошо развитой мускулатурой — даже 50%.

Отдельные мышечные группы растут неравномерно. У грудных детей прежде всего развиваются мышцы живота, позднее — жевательные. К концу первого года жизни в связи с ползанием и началом ходьбы заметно растут мышцы спины и конечностей. За весь период роста ребенка масса мускулатуры увеличивается в 35 раз.

Рис. 38. Строение мышцы:

а — мышца на поперечном разрезе: 1 — пучок мышечных волокон; 2— отдельные мышечные волокна; б — общий вид скелетной мышцы: 1 — брюшко; 2 — сухожилие

В период полового созревания (12—16 лет) наряду с удлинением трубчатых костей удлиняются интенсивно и сухожилия мышц. Мышцы в это время становятся длинными и тонкими, а подростки кажутся длинноногими и длиннорукими.

Строение мышц

В мышце различают среднюю часть — брюшко, состоящее из мышечной ткани, и сухожилие, образованное плотной соединительной тканью. С помощью сухожилий мышцы прикрепляются к костям, однако некоторые мышцы могут прикрепляться и к различным органам (глазному яблоку), к коже (на лице и шее) и т. д.

Каждая мышца состоит из большого количества поперечнополосатых мышечных волокон (рис. 38), расположенных параллельно и связанных между собой прослойками рыхлой соединительной ткани в пучки. Вся мышца снаружи покрыта тонкой соединительнотканной оболочкой — фасцией.

Мышцы богаты кровеносными сосудами, по которым кровь приносит к ним питательные вещества и кислород, а выносит продукты обмена. Имеются в мышцах и лимфатические сосуды.

В мышцах расположены нервные окончания — рецепторы, которые воспринимают степень сокращения и растяжения мышцы.

Форма и величина мышц зависят от выполняемой ими работы. Различают мышцы длинные, короткие, широкие и круговые. Длинные мышцы располагаются на конечностях, короткие — там, где размах движения мал (например, между позвонками). Широкие мышцы располагаются преимущественно на туловище, в стенках полостей тела (мышцы живота, спины). Круговые мышцы располагаются вокруг отверстий тела и при сокращении суживают их. Такие мышцы называют сфинктерами.

Один из концов мышцы называют началом. Обычно этот конец остается при сокращении неподвижным. Другой конец мышцы называют местом прикрепления или подвижной точкой. В сложных мышцах начало не одно, а могут быть две, три, четыре головки, которые, сливаясь, образуют общее брюшко. Это двуглавые, трехглавые и четырехглавые мышцы.

Разделенным может быть и тот конец мышцы, который называют прикреплением (например, длинный разгибатель пальцев). Брюшко мышцы также может быть поделено сухожилием (дву-

брюшная мышца), а может быть таких сухожильных перемычек много, как, например, в прямой мышце живота.

Работа мышц

Сокращаясь, мышцы выполняют работу. Работу скелетной мышцы определяют произведением веса поднятого груза на высоту его поднятия. Работу мышца совершает только в момент сокращения: она укорачивается, становясь при этом толще, и сближает кости, на которых укреплена. При расслаблении мышца работы не производит. Поэтому движение в любом суставе обеспечивается минимум двумя мышцами, действующими в противоположных направлениях. Такие мышцы называют антагонистами (например, сгибатели и разгибатели). При каждом движении напрягаются не только мышцы, совершающие его, но и их антагонисты, противодействующие тяге и тем самым придающие движению точность и плавность. Приводя в движение кость, мышца действует как рычаг.

Работа мышц зависит от их силы. Мышца тем сильнее, чем больше в ней мышечных волокон, т. е. чем она толще. При поперечном сечении 1 см

2 мышца способна поднять груз до 10 кг.

Человек может длительное время сохранять одну и ту же позу. Это статическое напряжение мышц. К статическим усилиям относятся стояние, держание головы в вертикальном положении и др. При статическом усилии мышцы находятся в состоянии напряжения. При некоторых упражнениях на кольцах, параллельных брусьях, при удержании поднятой штанги статическая работа требует одновременного сокращения почти всех мышечных волокон и, естественно, может быть очень непродолжительной.

При динамической работе поочередно сокращаются различные группы мышц. Мышцы, производящие динамическую работу, быстро сокращаются и, работая с большим напряжением, скоро утомляются. Обычно же различные группы мышечных волокон сокращаются поочередно, что дает возможность мышце длительное время совершать работу. Нервная система, управляя работой мышц, приспосабливает их работу к текущим потребностям организма. Это дает им возможность работать экономно, с высоким коэффициентом полезного действия (до 25 и 35%). Для каждого вида мышечной деятельности можно подобрать некоторый средний (оптимальный) ритм и величину нагрузки, при которых работа будет максимальной, а утомление будет развиваться постепенно.

Работа мышц — необходимое условие их существования. Длительная бездеятельность мышц ведет к их атрофии и потере ими работоспособности. Тренировка, т. е. систематическая, нечрезмерная работа мышц, способствует увеличению их объема, возрастанию силы и работоспособности, что способствует физическому развитию всего организма.

Мышцы человека даже в состоянии покоя несколько сокращены. Это состояние длительно удерживаемого напряжения называют тонусом мышц. Во время сна, при наркозе тонус мышц несколь-

ко снижается, тело расслабляется. Полностью исчезает мышечный тонус только после смерти. Тонические сокращения мышц не сопровождаются утомлением; благодаря им внутренние органы удерживаются в нормальном положении.

Утомление мышц

После длительной работы происходит снижение работоспособности мышц, которая восстанавливается после отдыха. Такое временное понижение работоспособности называют утомлением.

Развитие утомления связано прежде всего с изменениями, происходящими в центральной нервной системе. При этом нарушается координация движений. При утомлении используются запасы химических веществ, служащих источниками энергии сокращения, накапливаются продукты обмена (молочная кислота и др.).

Скорость наступления утомления зависит от состояния нервной системы, частоты ритма, в котором производится работа, и от величины нагрузки. Утомление может быть вызвано неблагоприятной обстановкой. Неинтересная работа быстрее вызывает наступление утомления.

Физическое утомление—нормальное физиологическое явление. После отдыха работоспособность не только восстанавливается, но и часто превышает исходный уровень. Впервые И. М. Сеченов в 1903 г. показал, что восстановление работоспособности утомленных мышц правой руки происходит значительно быстрее, если в период отдыха производить работу левой рукой. В отличие от простого покоя такой отдых был назван И. М. Сеченовым 

активным.

Это явление можно объяснить следующим образом. Известно, что работающие мышцы получают импульсы из соответствующих участков нервной системы. При длительной работе происходит утомление ранее всего в нервных центрах, связанных с определенными группами работающих мышц. Оказывается, восстановление работоспособности нервных клеток, посылавших импульсы к мышцам правой руки, происходит быстрее, если нервные клетки, связанные с мышцами левой руки, находятся в состоянии возбуждения.

Механизм мышечного сокращения

В основе мышечных сокращений лежат сложные химические превращения органических веществ мышцы. Распад этих веществ сопровождается освобождением энергии, которая идет не только на работу мышц, но и в значительном количестве превращается в тепло. Это тепло согревает тело.

В составе мышечных волокон собственно сократительным аппаратом являются миофибриллы. В поперечнополосатых мышечных волокнах миофибриллы разделены на правильно чередующиеся участки (диски). Одни из этих участков обладают двойным лучепреломлением. В обыкновенном свете под микроскопом они кажутся темными. Это анизотропные участки, их обозначают буквой А. Другие участки в обыкновенном свете выглядят светлыми.

Рис. 39. А — электронно-микроскопическая картина миофибриллы (схематизировано). Показаны диски AиI, полоски Z и Н. Б, В — взаимное расположение толстых (миозиновых) и тонких (актиновых) нитей в расслабленной (Б) и сокращенной (В) миофибрилле

Они не обладают двойным лучепреломлением. Это изотропные диски, обозначаемые буквой I (рис. 39, А).

В середине диска А проходит светлая полоса И, посредине диска 

I — темная полоса Z. Полоса Z представляет собой тонкую мембрану, сквозь поры которой проходят миофибриллы.

Американскому цитологу Хаксли с помощью электронной микроскопии удалось показать, что каждая из миофибрилл мышечного волокна состоит в среднем из 2500 протофибрилл. Толстые протофибриллы состоят из белка миозина, а тонкие протофибриллы — из белка актина. Согласно представлениям Хаксли, миозин и актин в миофибрилле пространственно отделены друг от друга.

Содержание миозина в мышцах велико: в 1 кг мышц содержится около 200 г белков, из них можно выделить почти 100 г миозина. Другой белок — актин — содержится в мышцах в меньшем количестве: из 1 кг мышц выделяется примерно около 30 г актина.

В состоянии покоя мышечного волокна нити расположены в миофибрилле так, что тонкие и длинные актиновые нити входят своими концами в промежутки между толстыми и более короткими миозиновыми нитями (рис. 39, Б). Поэтому диски I состоят только из актиновых нитей, а диски 

А — из нитей миозина.

Светлая полоска Н свободна от актиновых нитей. Мембрана Z, проходя через середину диска I, скрепляет между собой эти нити.

Согласно представлениям Хаксли, при сокращении миофибрилл происходит вдвижение нитей актина в промежутки между нитями миозина, своеобразное «скольжение» (рис. 39, В)В результате такого вдвижения длина дисков Iукорачивается, а диски А сохраняют свой размер. В связи с тем, что актиновые нити при сокращении сближаются друг с другом своими концами, светлая полоска Н почти исчезает.

Наиболее интересное свойство миозина — его способность расщеплять АТФ. Это свойство миозина открыто советскими биохимиками В. А. Энгельгардтом и М. Н. Любимовой в 1939 г. Под влиянием миозина от молекулы АТФ отщепляется одна молекула фосфорной кислоты. При этом освобождается энергия. Миозин

таким образом является не только сократительным белком, но и одновременно ферментом аденозинтрифосфатазой (АТФ-азой).

Что же заставляет белковые нити «скользить» при сокращении? Механизм этот пока еще не выяснен. Предполагают, что под влиянием ферментативных свойств миозина АТФ-аза толстых нитей расщепляет АТФ, находящуюся на тонких нитях актина. АТФ при этом разрушается и сходит с актиновых нитей. Последние скручиваются, скользят вдоль миозиновых нитей. Очевидно, на этом уровне происходит переход химической энергии расщепления АТФ в механическую энергию движения. Энергию для мышечного сокращения поставляет АТФ. В скелетной мышце содержание АТФ составляет 0,2—0,4%. Этого количества АТФ достаточно примерно для 30 одиночных сокращений мышцы. Однако в нормальных условиях мышца может работать очень долго. Это связано с тем, что в мышце идет процесс ресинтеза, т. е. восстановления АТФ, процесс ее синтеза.

За счет чего синтезируется АТФ в работающей мышце? В мышце есть богатое энергией фосфорное соединение — креатинфосфат. В молекуле креатинфосфата содержится одна макроэргическая связь:

При гидролитическом расщеплении креатинфосфата образуются креатин и фосфорная кислота. При этом освобождается энергия. Этот процесс происходит под влиянием фермента фосфокиназы. При этом освобождающаяся фосфорная кислота восстанавливает АТФ. Ресинтез АТФ в присутствии креатинфосфата идет в течение тысячных долей секунды. Но при усиленной мышечной работе истощаются запасы креатинфосфата. Тогда важную роль приобретают процессы гликолиза и окисления, протекающие в мышце (см. стр. 29, 34). Окисление молочной и пировиноградной кислот, образующихся в мышце во время сокращения, способствует ресинтезу креатинфосфата и АТФ.

Основные группы мышц человеческого тела

К мышцам туловища относятся мышцы грудной клетки, живота и спины (цвет, табл. V—X).

Мышцы, располагающиеся между ребрами, а также другие мышцы грудной клетки участвуют в функции дыхания и называются дыхательными. К их числу принадлежит и диафрагма.

Мощно развитые мышцы груди приводят в движение и укрепляют на туловище верхние конечности (большая и малая грудные, передняя зубчатая мышцы).

Мышцы живота выполняют различные функции. Они образуют стенку брюшной полости и благодаря своему тонусу удерживают внутренние органы от смещения, опускания, выпадения. Сокращаясь, мышцы живота действуют на внутренние органы в качестве брюшного пресса, что способствует выведению мочи, кала, а также родовому акту. Сокращение мышц брюшного пресса способствует движению крови в венозной системе, осуществлению дыхательных движений. Мышцы живота участвуют в сгибании позвоночного столба вперед.

При слабости мышц живота может произойти не только опущение органов брюшной полости, но и образование грыж. При грыжах происходит выход внутренних органов — кишечника, желудка, большого сальника, почки из брюшной полости под кожу живота.

К мышцам брюшной стенки относятся прямая мышца живота, пирамидальная мышца, квадратная мышца поясницы и широкие мышцы живота — наружная и внутренняя косые и поперечная. По средней линии живота тянется плотный сухожильный тяж. Это белая линия. По бокам от белой линии располагается прямая мышца живота с продольным направлением волокон.

На спине расположены многочисленные мышцы вдоль позвоночного столба. Это глубокие мышцы спины. Они прикрепляются главным образом к отросткам позвонков. Эти мышцы участвуют в движениях позвоночного столба назад и в сторону. К поверхностным мышцам спины относятся трапециевидная мышца и широчайшая мышца спины. Они участвуют в движении верхних конечностей и грудной клетки.

Среди мышц головы различают жевательные мышцы и мимические. К жевательным мышцам относятся височная, жевательная, крыловидные. Сокращения этих мышц вызывают сложные жевательные движения нижней челюсти. Мимические мышцы одним, а иногда и двумя своими концами прикрепляются к коже лица. При сокращении они смещают кожу, вызывая соответствующую мимику, т. е. то или иное выражение лица. Круговые мышцы глаза и рта также относятся к числу мимических мышц.

Мышцы шеи запрокидывают голову, наклоняют ее и поворачивают. Лестничные мышцы поднимают ребра, участвуя во вдохе. Мышцы, прикрепленные к подъязычной кости, при сокращений изменяют положение языка и гортани при глотании и произнесении различных звуков. |

Пояс верхних конечностей соединяется с туловищем лишь в области грудино-ключичного сустава. Укреплен пояс верхних конечностей мышцами туловища (трапециевидная, малая грудная, ромбовидная, передняя зубчатая и мышца, поднимающая лопатку).

Мышцы пояса верхних конечностей приводят в движение верхнюю конечность в плечевом суставе. Среди них важнейшая — дельтовидная мышца. При сокращении эта мышца сгибает руку в плечевом суставе и отводит руку до горизонтального положения.

В области плеча спереди расположена группа мышц-сгибателей, сзади—разгибателей. Среди мышц передней группы — двуглавая мышца плеча, задней — трехглавая мышца плеча.

Мышцы предплечья на передней поверхности представлены сгибателями, на задней — разгибателями.

Среди мышц кисти — длинная ладонная мышца, сгибатели пальцев.

Мышцы, расположенные в области пояса нижних конечностей, приводят в движение ногу в тазобедренном суставе, а также позвоночный столб. В переднюю группу мыши- входит одна крупная мышца — подвздошно-поясничргая. Среди задненаружной группы мышц тазового пояса — большая, средняя и малая ягодичные

мышцы.

Ноги имеют более массивный скелет, чем руки; их мускулатура обладает большой силой, но вместе с тем меньшим разнообразием и ограниченным размахом движений.

На бедре спереди располагается самая длинная в человеческом теле (до 50 см) портняжная» мышца. Она сгибает ногу в тазобедренном и коленном суставах. Четырехглавая мышца бедра лежит глубже портняжной мышцы, облетая бедренную кость почти со всех сторон. Основная функция этой мышцы — разгибание коленного сустава. При стоянии четырехглавая мышца не дает коленному суставу сгибаться.

 

Статья на тему Мышечная система человека

znaesh-kak.com

2.5. Строение и функции мышечной системы человека

2.5.1. Строение и основные свойства мышечной ткани

Мышцы тела человека образованы в основном мышечной тканью, состоящей из мышечных клеток. Различают гладкую и поперечнополосатую мышечную ткань. Гладкая мышечная ткань образует гладкую мускулатуру, которая входит в состав некоторых внутренних органов, а поперечнополосатая образует скелетные мышцы. Общим свойством мышечной ткани является ее возбудимость, проводимость и сократимость (способность сокращаться).

Поперечнополосатая мышечная ткань отличается от гладкой более высокой возбудимостью, проводимостью и сократимостью. Клетки поперечнополосатой мускулатуры имеют очень малый диаметр и большую длину (до 10–12 см). В связи с этим их называют волокнами.

В состав мышечных волокон входит большое количество еще более тонких волоконец – миофибрилл, которые, в свою очередь, состоят из тончайших нитей – протофибрилл. Протофибриллы – это сократительный аппарат мышечной клетки, они представляют собой специальные сократительные белки миозин и актин. Механизм мышечных сокращений представляет собой сложный процесс физических и химических превращений, протекающий в мышечном волокне при обязательном участии сократительного аппарата. Запуск этого механизма осуществляется нервным импульсом, а энергия для процесса сокращения поставляется аденозинтрифосфорной кислотой (АТФ). В этой связи особенностью строения мышечных волокон является также большое количество митохондрий, обеспечивающих мышечное волокно необходимой энергией. Расслабление мышечного волокна, по предположению многих ученых, осуществляется пассивно, благодаря эластичности мембраны и внутримышечной соединительной ткани.

2.5.2. Строение, форма и классификация скелетных мышц

Анатомической единицей самой активной части мышечной системы человека скелетной, или поперечно-полосатой, мускулатуры является скелетная мышца. Скелетная мышца – это орган, образованный поперечно-полосатой мышечной тканью и содержащий, кроме того, соединительную ткань, нервы и сосуды.

Каждая мышца или группа мышц окружена своеобразным «футляром» из соединительной ткани – фасцией. На поперечном срезе мышцы легко различаются скопления мышечных волокон (пучки), также окруженные соединительной тканью.

Во внешнем строении мышцы различают сухожильную головку, соответствующую началу мышцы, брюшко мышцы, или тело, образованное мышечными волокнами, и сухожильный конец мышцы, или хвост, с помощью которого мышца прикрепляется к другой кости. Обычно хвост мышцы является подвижной точкой прикрепления, а начало неподвижной. В процессе движение их функции могут меняться: подвижные точки становятся неподвижными и наоборот.

Помимо указанных выше основных компонентов скелетной мышцы существуют различные вспомогательные образования, способствующие оптимальному осуществлению движений.

Форма мышц очень разнообразна и в значительной степени зависит от функционального назначения мышцы. Различают длинные, короткие, широкие, ромбовидные, квадратные, трапециевидные и другие мышцы. Если мышца имеет одну головку, ее называют простой, если две или больше – сложной (например, двуглавая, трехглавая и четырехглавая мышца).

Мышцы могут иметь две или несколько срединных частей, например, прямая мышца живота; несколько концевых частей, например, сгибатель пальцев кисти имеет четыре сухожильных хвоста.

Важным морфологическим признаком является расположение мышечных волокон. Различают параллельное, косое, поперечное и круговое расположение волокон (у сфинктеров). Если при косом расположении мышечных волокон они присоединяются только с одной стороны сухожилиями, то мышцы называют одноперистыми, если с двух сторон – то двуперистыми.

Функционально мышцы можно разделить на сгибатели и разгибатели, вращатели кнаружи (супинаторы) и вращатели кнутри (пронаторы), приводящие мышцы и отводящие. Выделяют также мышцы-синергисты и мышцы-антагонисты. Первые образуют группу мышц, содружественно выполняющих какое-либо движение, сокращение вторых вызывает противоположные движения.

По месту расположения мышц, т. е. по их топографо-анатомическому признаку, выделяют мышцы спины, груди, живота, головы, шеи, верхних и нижних конечностей. Всего анатомы различают 327 парных скелетных мышц и 2 непарных. Все вместе они в среднем составляют около 40% массы тела человека (рис. 2.6, 2.7).

studfiles.net

Мышечная система человека: строение, особенности, заболевания

Теперь мы узнаем, как происходит собственно движение; оно обеспечивается МЫШЕЧНОЙ СИСТЕМОЙ.

Строение и расположение мышц

Человеческое тело состоит из многих тысяч мышц. Некоторые из них имеют внутреннее расположение, другие прикреплены к костям, коже и иным мышцам для обеспечения определенных движений. Мышцы могут двигаться произвольно (когда мы контролируем движение) и непроизвольно (без сознательного контроля) в зависимости от типа мышечной ткани. Различают кардиальную, висцеральную и скелетную.

Кардиальная (сердечная) мышечная ткань

Из кардиальной мышечной ткани состоит только сердце. Она полосатая, каждая клетка имеет ядро. Сердце сокращается и расширяется, гоняя кровь по сосудам всего тела. Движения кардиальной мышечной ткани непроизвольны.

Висцеральная мышечная ткань

Из-за своего вида висцеральная мышечная ткань еще называется гладкой. Ее клетки веретенообразные и расположены пучками. У каждой летки есть ядро, но нет выраженной мембраны, за счет этого достигается однородность ткани. Этот тип ткани формирует внутренние органы; его движения непроизвольны Висцеральная мышечная ткань отвечает за продвижение пищи по пищеварительной системе и за удаление продуктов распада через моче-выделительную систему. Мышца, поднимающая волос, в коже — тоже висцеральная; она сокращается при изменении темпе натуры тела, вызывая появление мурашек. Все эти действия происходят без каких-либо сознательных действий со шеи стороны.

Скелетная мышечная ткань

Скелетная мышечная ткань из-за своего вида называется также поперечно-полосатой. Она обеспечивает произвольные движения тела. Именно скелетные мышцы представляют интерес для терапевтов, так как с ними можно проводить некоторые процедуры. Скелетные мышцы располагаются как глубоко внутри тела, так и почти у его поверхности, в зависимости от их назначения. Значительное количество мышц накладывается друг на друга, многие из них работают вместе, обеспечивая одно движение.

Строение скелетных мышц

Мышцы — живая, активная ткань, состоящая из:

  • Воды — примерно на 75%.
  • Неорганических веществ (например, минеральных солей) примерно на 5%.
  • Органических веществ — около 20%; в их число входят формирующие клетки мышц миобласты.

Формирование мышц

Миобласты отвечают за формирование мышечных волокон, которые в свою очередь образуют мышечную ткань. Число мышечных волокон относительно постоянно с самого рождения, так как они способны расти и увеличиваться в размерах. Мышечные волокна имеют нитевидные структуры — миофибриллы, — которые протягиваются от одного конца волокна до другого. Каждая миофибрилла состоит из еще более мелких нитей — филаментов протеина миофиламентов.

Различают два вида миофиламентов:

  1. Актин — тонкие филаменты.
  2. Миозин — толстые филаменты.

В мышечных волокнах присутствуют митохондрии. Их часто называют «энергетическими центрами», поскольку они ответственны за производство энергии, которую необходимо затратить на активизацию мышцы, приводящую в движение тело. В этих «энергетических центрах» хранится гликоген и миоглобин. Гликоген — конечный продукт расщепления углеводов, которые мы получаем с пищей. Он необходим для производства энергии. Миоглобин удерживает кислород, который приносится в мышцы от дыхательной системы (глава 5), и нужен для активизации энергии. Мышечные волокна окружены соединительной тканью — эндомизием, который обеспечивает их поддержку. Группы мышечных волокон образуют пучки, окруженные другой соединительной тканью, тоже служащей для поддержки, — перимизием. Пучки мышечных волокон объединяются, образуя мышцы, покрытые слоем, или фасцией, оболочки поперечно-полосатого мышечного волокна. Именно из-за такой структуры мышцы производят эффект полос — как связка эластичных бинтов. Мышцы имеют обильный приток крови, обеспечивающий их «топливом», и снабжены нервами, соединяющими мышечную систему с мозгом, который управляет движениями.

Форма мышц

Скелетные мышцы бывают четырех основных форм:

  1. Веретенообразные: толстая центральная секция с сужающимися концами (бицепс и трицепс).
  2. Плоские: тонкие «листы» мышц, например фронтальная мышца черепа.
  3. Треугольные: широкие с одного конца и узкие с другого, например дельтовидная мышца плеча.
  4. Круговые: окружают отверстия, например сферические мышцы глаз и рта, и сфинктер, расположенный в области анального отверстия и копчика, около выходов из пищеварительной и почечной систем.

Соединение мышц

Большая часть мышц прикрепляется к костям прочной фиброзной соединительной тканью — сухожилиями, в местах прикрепления мышцы. Мышца может прикрепляться фиксированно или подвижно.

Сокращение мышц

Есть два вида сокращения мышц:

  1. Концентрическое сокращение — укорочение мышцы.
  2. Эксцентрическое сокращение — удлинение мышцы.

При концентрическом сокращении филаменты актина и миозина стягивают мышцы к середине, это похоже на складывание раскладной лестницы. Противоположный процесс называется эксцентрическим сокращением, когда филаменты растягивают мышцу. Из-за эластичности мышечной ткани она способна возвращаться в исходную форму. Сила сокращения зависит от количества одновременно сокращающихся волокон. Чем их больше, тем сильнее сокращение.

Волокна мышц в покое и при сокращении. Мышцы состоят из разных типов волокон, которые позволяют осуществлять разные движения:

  • Медленно сокращающиеся волокна могут двигаться медленно и с небольшой силой на протяжении достаточно долгого времени.
  • Быстро сокращающиеся волокна обеспечивают быстрые, сильные, но непродолжительные движения.

В теле человека эти два вида волокон могут сочетаться в разных пропорциях, в зависимости от наследственности, и эту особенность организма нельзя изменить, но можно улучшить форму индивидуальных мышц при помощи тренировок.

Кровоснабжение мышц

Мышцы нуждаются в питательных веществах и кислороде, которые им приносить кровь, «заряжая» движение.

Этот процесс происходит тремя способами:

  1. Гликоген, получаемых из пищеварительной системы и хранящийся в митохондриях мышц, и кислород из дыхательной системы, в миоглобине при окислении образуют аденотринотрифосфат. АТФ — это химическое топливо, необходимое для движений мышц. В результате этой реакции образуется побочный продукт, который используется кислородом для производства дополнительной энергии. Эта энергетическая система называется аэробной. Другие продукты реакции, включая углекислый газ и воду, уносятся кровеносной системой и удаляются из организма.
  2. Когда необходимо очень много энергии, из-за недостатка кислорода возникает кислородная задолженность и образуется мол очная кислота, что приводит к чувству усталости, нехватке воздуха и болям в мышцах. Это анаэробная энергетическая система. Когда потребность в энергии снижается, мы можем делать глубокие вдохи, восполняя кислородную задолженность. Циркуляторная система выводит из организма углекислый газ, воду и молочную кислоту. Молочная кислота попадает в печень и там расщепляется до гликогена, который впоследствии используется для производства энергии. Этот процесс позволяет болезненным мышцам постепенно вернуться к норме.
  3. В митохондриях мышц уже хранится небольшое количество энергии в форме АТФ. Эта энергия может быть использована для коротких выбросов, только перед тем, как в действие вступит одна из первых двух систем.

Иннервация мышц

Движения мышц задаются через нервную систему двигательными и чувствительными нервами.

  1. Двигательные нервы, соединенные с мозгом, входят в мышцу через двигательный центр и выходят через концевую пластинку двигательного нерва. Двигательный центр получает сигнал мозга и передает его каждому волокну, информируя всю мышцу о сокращении или расслаблении.
  2. Чувствительные нервы идут к мозгу параллельно с двигательными, информируя его о действиях мышц.

Развитие мышц

Количество мышечных волокон в теле остается неизменным на протяжении жизни, однако мы можем увеличивать силу, гибкость и выносливость мышц с помощью физических упражнений или уменьшать ее, не используя ту или иную группу мышц. При постоянном использовании мышцы увеличиваются в размере, при недостатке же нагрузки — уменьшаются. Если мышцы повреждаются в результате несчастного случая или, к примеру, во время хирургической операции, поврежденная ткань удаляется при фагоцитозе. Клетки, называемые фагоцитами, поглощают такую ткань, которая впоследствии заменяется новой. Если повреждение мышцы незначительно, сохранившиеся волокна прорастают, восполняя потерянные, и мышца полностью восстанавливается. При большем повреждении волокна не способны восполнить погибшую ткань, и на месте повреждения формируется рубцовая ткань, которая может ограничивать движения суставов.

Скелетные мышцы

Мышцы тела

Терапевтам необходимо знать типы мышечной ткани, из которой состоит человеческое тело, особенно те мышцы, с которыми они непосредственно контактируют. Эти знания позволят терапевту подбирать процедуры, необходимые для каждого клиента. Знание отдельных мышц тела даст вам огромные преимущества.

Мимические мышцы лица:

  • Лобное и затылочное брюшко надчерепной мышцы — покрывают затылочную кость от основания черепа и лобную кость; образуют лоб, поднимают брови и образуют лобные складки.
  • Мышца, сморщивающая брови — находится между бровями и сводит их вместе, образуя вертикальную складку кожи.
  • Круговые мышцы глаз — круговые мышцы, окружающие глаза. Обеспечивают закрывание глаз и ответственные за появление морщинок в уголках глаз, сначала, только когда мы зажмуриваем глаза, а со временем постоянных.
  • Скуловая мышца — покрывает скуловые кости, прикреплена к мышцам рта. Поднимает рот и щеки, когда мы смеемся.
  • Мышца смеха — находится внизу щеки, прикреплена к уголкам рта, поднимает и растягивает их, когда мы улыбаемся
  • Щечная мышца — находится в области щеки между верхней и нижней челюстями, двигает челюсти, когда мы дуем или жуем.
  • Носовая мышца — покрывает переднюю поверхность носа, сморщивая его при сокращении.
  • Мышца гордецов — покрывает переносицу; опускает брови, образуя поперечные морщины на переносице.
  • Круговая мышца рта — отвечает за движения рта, в том числе за его складывание и сжимание, как при поцелуе.
  • Мышца, опускающая угол рта — проходит вдоль подбородка, тянет уголки рта вниз, создавая недовольное выражение лица.
  • Подбородочная мышца — расположена в верхней части подбородка, поднимает нижнюю губу, как при сомнении или недовольстве, образуя поперечную складку на подбородке.

Жевательные мышцы:

  • Височно-теменная мышца — расположена сбоку головы между ухом и нижней челюстью. Обеспечивает движения нижней челюсти при жевании.
  • Жевательная мышца — расположена между скулой и нижней челюстью. Поднимает нижнюю челюсть, позволяет нам закрывать рот и стучать зубами.
  • Щечная мышца — расположена между верхней и нижней челюстями, сводит щеки при жевании.

Мышцы шеи, спины и груди:

  • Подкожная мышца шеи — большая мышца, занимающая переднюю часть шеи от подбородка до груди. Обеспечивает движение вниз нижней челюсти и губы, создавая выражение грусти, и образует складки шеи.
  • Грудино-ключично-сосцевидная мышца — протягивается от височной кости до грудино-ключичного сочленения. Эти две мышцы обеспечивают движения головы вперед и из стороны в сторону. Трапециевидная мышца — большая треугольная мышца, расположенная на задней части шеи и верхней части спины. Обеспечивают движения головы из стороны в сторону, и против подкожной мышцы шеи — для движения назад. При совместной работе с подкожной мышцей шеи обеспечивает наклон головы вперед. Участвует в движении плеч.
  • Мышца, выпрямляющая спину — группа мышц, тянущихся вдоль позвоночника по центру спины от шеи до таза. Обеспечивают выпрямленную позу и выпрямление позвоночника.
  • Широчайшая мышца спины — идет по обеим сторонам спины от подмышек до области поясницы. Обеспечивает движения при вращении, лазании, работе плечевого сустава.
  • Большая и малая грудные мышцы — расположены на груди ниже молочных желез. Вместе они способствуют движениям плеч, в том числе при лазании и броска .
  • Передняя зубчатая мышца — расположена ниже подмышки; задействована в движении плеча при толкании и ударах.

Мышцы груди:

  • Диафрагма — большая куполообразная мышца, отделяющая трахею от живота. Расширяется и освобождает пространство, позволяя легким наполняться воздухом при вдохе. При выдохе возвращается в исходное положение.
  • Межреберные мышцы — внутренние и внешние, расположены между ребрами по форме трахеи. Работают вместе, увеличивая объем трахеи при вдохе (внешние мышцы) и сокращая ребра при выдохе и кашле.

Мышцы пояса верхних конечностей:

  • Дельтовидная мышца — расположена в верхней части руки и на плече от ключицы до верха плечевой кости. Участвует в движении плечевого сустава, поднимая руку и обеспечивая ее движения назад и вперед.
  • Бицепс — расположен на передней поверхности плеча, участвует в сгибании руки в локте и вращении предплечья и кисти.
  • Трицепс — расположен с тыльной стороны плеча, работает против бицепса при выпрямлении руки. Плечелучевая мышца — расположена на передней стороне руки под бицепсом; вместе с бицепсом сгибает руку.
  • Сгибающие и разгибающие мышцы — расположены в предплечьях, кистях и пальцах, сгибают и выпрямляют запястье, суставы кисти и пальцев.

Мышцы живота:

  • Мышцы передней стенки живота — расположены по центру живота от грудины до таза. Работают противоположно мышце, выпрямляющей спину: сгибают спину и держат живот для сохранения прямого положения корпуса.
  • Мышцы боковой стенки живота — внутренние и внешние мышцы, образующие талию. Эти мышцы лежат по бокам от передней стенки живота; внешние мышцы смотрят внутрь, а внутренние — наружу. Они позволяют корпусу двигаться из стороны в сторону.

Мышцы нижних конечностей:

  • Приводят в движение тазобедренные суставы — при ходьбе, беге или вертикальном статическом положении. Известны также как отводящие мышцы, так как обеспечивают движение ноги в сторону от центральной линии корпуса.
  • Приводящие мышцы — четыре мышцы внутренней поверхности бедра. Участвуют в движениях тазобедренных суставов, обеспечивая движение ног к центральной линии корпуса.
  • Задняя группа мышц бедра — три мышцы, расположенные от таза до колена. Сгибают колено и отводят бедро назад, например, при беге или прыжках.
  • Передняя группа мышц бедра — четыре мышцы передней поверхность лежащие напротив мышц задней поверхности бедра. Работают противоположно задней группе мышц бедра, выпрямляя колено и сгибая бедро при ходьбе или выбрасывании ноги вперед.
  • Портняжная мышца — пересекает переднюю поверхность бедра от внешней части таза к внутренней части колена. Участвует в движении тазобедренного сустава и используется при развороте ноги наружу.
  • Икроножная мышца начинается на бедренной кости и прикрепляется к ахиллову (пяточному) сухожилию. Ее положение позволяет двигать ногой, сгибать колено, обеспечивает толчок при ходьбе и беге.
  • Передняя болыпеберцовая мышца — образует переднюю поверхность голени. Работает противоположно портняжной мышце: поворачивает ногу внутрь. Во время вождения мы пользуемся этой мышцей, когда снимаем ноги с педалей. Камбаловидная мышца — лежит в икре ниже и глубже портняжной мышцы, участвует в движении стопы.

Функции мышечной системы

Теперь, когда мы знаем строение, расположение и назначение скелетных мышц, можно перейти к их функциям. Мышечная система выполняет три основные функции: движение, удерживание тела и производство тепла.

Движение

Каждая из мышц участвует в каком-то движении:

  • Кардиальная мышечная ткань ответственна за сердцебиение.
  • Висцеральная мышечная ткань внутренних органов передвигает пищу и экскременты по пищеварительной и почечной системам. Их работа называется перистальтикой.
  • Скелетная мышечная ткань приводит в движение суставы — осуществляет изотоническое движение. Эти мышцы также могут выполнять статические сокращения, при которых двигается только сама мышца — изометрическое движение.

Удерживание тела

  • Скелетные мышцы обеспечивают вертикальное положение тела. Для этого служат волокна, которые совершают определенное количество сокращений. Это явление называется мышечным тонусом. Когда мышечный тонус полностью исчезает, тело теряет равновесие и мы падаем в обморок.
  • Хорошая осанка зависит от тонуса мышц, ответственных за вертикальное положение корпуса.
  • Плохая осанка приводи к мышечной усталости: в мышцах накапливается молочная кислота, они начинают болеть.

Производство тепла

  • Активные мышцы производят огромное количество тепла, которое с кровью переносится в другие части тела, поддерживая его температуру.
  • Если температура тела растет во время физических нагрузок, расширение кровеносных сосудов и потоотделение обеспечивают его охлаждение.
  • Когда температура тела надает ниже определенной отметки, непроизвольно появляется дрожь — быстрое сокращение мышц, вызывающее скорее сотрясение, чем координированные движения. При этом производится тепло, которое позволяет поднять температуру тела до нормы.
  • Мышцы реагируют на изменение температуры, расслабляясь на жаре и напрягаясь на холоде.

Возможные нарушения

Возможные нарушения мышечной системы от А до Я:

  • АТРОФИЯ — истощение мышечной ткани.
  • КРИВОШЕЯ — непроизвольное сокращение мышц шеи.
  • МИАЛГИЯ — боль в мышцах.
  • МИАСТЕНИЯ — хроническое заболевание, характеризующееся слабостью и повышенной утомляемостью мышц.
  • МИОКИМИЯ — постоянная дрожь мышц.
  • МИОМА — опухоль из мышечной ткани.
  • МИОЗИТ — воспаление скелетных мышц.
  • МИОТОНИЯ — длительные мышечные спазмы.
  • МЫШЕЧНАЯ ДИСТРОФИЯ — наследственное заболевание, ведущее к потере функции мышц.
  • ПАРАЛИЧ — потеря частью тела способности двигаться.
  • ПАРЕЗ — частичный или легкий паралич.
  • РАЗРЫВ мышечной фасции или сухожилия.
  • «РАСКОЛОТАЯ ГОЛЕНЬ» — болезненность передней поверхности голени, вызванная избыточным хождением вверх и вниз, в том числе по лестницам.
  • НАПРЯЖЕНИЕ — результат чрезмерного использования мышцы.
  • СПАЗМ — внезапное непроизвольное сокращение мышцы.
  • СТРЕСС — перенапряжение мышцы, приводящее к ее отвердению, болезненным ощущениям и ограничению подвижности суставов.
  • СУДОРОГА — внезапное непроизвольное сокращение мышцы, вызывающее боль.
  • ТЕНДИНИТ — воспаление сухожилия и прилежащей мышечной ткани.
  • ТЕНДОВАГИНИТ — воспаление влагалища сухожилия в месте, где оно покрывает сустав.
  • ТЕННИСНЫЙ ЛОКОТЬ/ЛУЧЕПШЕЧЕВОЙ БУРСИТ — воспаление сухожилий, связывающих распрямляющие мышцы предплечья с локтевым суставом.
  • УТОМЛЕНИЕ — возникновение молочной кислоты и связанная с ним потеря функции мышцы.
  • ФИБРОЗ — воспаление мышечных волокон.

Гармония

Мышечная ткань играет важную роль в поддержании жизненно важных функций тела: кардиальная ткань контролирует работу сердца,висцеральная — непроизвольные движения внутренних органов, скелетная -все произвольные движения тела. Мы редко придаем значение всем тем движениям, которые совершаем за день, выполняя самые различные задачи. Для их успешного решения, без чрезмерной нагрузки на организм мышечной системе необходим сбалансированный уход.

Жидкость

Главный компонент питания мышц — вода, из которой они состоят на 75%. Даже незначительная потеря воды ведет к упадку силы и скорости мышц. Поэтому для поддержания здоровья мышц чрезвычайно важно, чтобы уровень воды в организме был постоянным. Этого можно достичь, употребляя воду до, во время и после тренировок, а также через равномерные интервалы в течение дня.

  • Чтобы избежать обезвоживания во время упражнений, надо перед занятием пить воду. Она хранится в мышцах в виде гликогена и расходуется на производство энергии.
  • Во время физических упражнений температура тела поднимается, и излишнее тепло удаляется с потом, что может вызвать обезвоживание. В то же время происходит расширение сосудов: кровь притекает от мышц к коже, чтобы охладить организм. Питье во время занятия позволяет организму более эффективно охлаждаться за счет потоотделения без обезвоживания, а кровь может оставаться в мышцах и участвовать в производстве энергии.
  • Питье после занятия позволяет вымыть все побочные продукты, образовавшиеся в ходе выработки энергии, и, кроме того, избавиться от напряжения в мышцах.

Питание

Для нормального функционирования мышц необходимо потреблять продукты, содержащие углеводы, жиры и витамины.

  • Углеводы хранятся в в; де гликогена в мышцах и в печени и используются для производства энергии. К пище, содержащей углеводы, относятся макароны, рис, фрукты, бобовые и чечевица.
  • Жиры — запасной источник энергии. Ими особенно богаты орехи, зерновые и их масла.
  • Витамины А, С и Е — окислители; они помогают мышцам использовать кислород и нейтрализовать свободные радикалы, побочный продукт при производстве энергии. К тому же витамины группы В очень важны для производства энергии; они содержатся в водяном крессе, грибах и тунце.

Отдых

Для нормальной работы нужен адекватный отдых, пропорциональный нагрузкам. Во время отдыха мышцы восполняют кислородную задолженность, связанную с переутомлением, у организма есть время избавиться от побочных продуктов процесса производства энергии. Мышцы расслабляются, т.е. меньшее их количество одновременно сокращается, это позволяет избежать переутомления. Самый оптимальный отдых — глубокий сон. однако можно восстановить силы и за несколько периодов покоя в течение дня. Косметические процедуры и терапия вносят значительный вклад в укрепление здоровья мышечной системы. Положение лежа позволяет телу и мозгу расслабиться, касание стимулирует кровообращение, согревает мышцы, позволяя им полностью восстановиться.

Активность

Для поддержания здоровья мышц необходимо давать им разнообразные физические нагрузки. Упражнения позволяют мышцам развить силу, скорость, выносливость и гибкость. Достигнутый уровень физической подготовки необходимо постоянно поддерживать регулярными упражнениями. Для сохранения здоровья мышечной системы рекомендуется заниматься хотя бы по 20 минут три раза в неделю. Физические нагрузки
должны быть разнообразными и интересными и тренировать основные мышцы, а также сердце и легкие. Это увеличит количество кислорода, получаемое при вдохе, и выносливость дыхательной системы. Наша жизнь наполнена различными устройствами, заменяющими труд, из-за которых мы становимся менее активными. Поэтому потребность в физической активности в настоящее время еще более возрастает.

Воздух

Для производства энергии мышцам необходимо обильное снабжение кислородом. При этом очень важно качество как дыхания, так и самого воздуха. Во время физических упражнений особенно важно следить за дыханием: нужно делать глубокий неторопливый вдох, а затем глубокий выдох. При силовых упражнениях вдох нужно делать на расслабление, а выдох — на напряжение. Например, во время приседаний мы выдыхаем, когда встаем, и вдыхаем, когда опускаемся. Это обеспечивает оптимальную работу мышц и минимальную мышечную усталость. Удивительно, что часто мы вообще забываем дышать, концентрируясь на выполнении упражнения. В таком случае тело не может работать в полную силу, поэтому нужно всегда помнить, что глубина дыхания должна соответствовать уровню нагрузки.

Возраст

В связи со старением и снижением активности мышцы слабеют. Эти процессы совместно с общим замедлением процессов, происходящих в организме, приводят к появлению морщин, потере упругости кожи, так как мышцы ослабевают и уже не могут выносить такие же нагрузки, как раньше. Регулярные упражнения помогут сохранить мышцы упругими и здоровыми, что окажет благоприятное воздействие на пищеварительную и скелетную системы, стимулируя кровообращение и обновление клеток. В результате улучшается внешний вид и функционирование всех систем организма, что в конечном итоге продлевает жизнь.

Цвет

Мышечная система опирается на скелетную, кости которой служат рычагами, а суставы обеспечивают движения. Мышечная система также зависит от сигналов нервной системы, энергии в форме кислорода и гликогена из дыхательной и пищеварительной систем, все из которых являются условиями для совершения движений. На здоровье мышечной системы влияют чакры, расположенные вдоль осевого скелета, и связанные с ними цвета. Визуализация этого.цветового ряда позволит активизировать энергию тела, имеющих до 50% мышц, и даст толчок всему организму. Отдельные цвета имеют свои особые функции, например красный стимулирует, голубой успокаивает и т.д.

Знание

Мышечная система дает нам исключительный способ невербального общения — язык тела. Мышцы лица формируют его выражения, которые отражают наши чувства и эмоции. Мышцы теле позволяют совершать контролируемые движения, действуя в зависимости от ситуации. Язык тела обычно принимает форму интуитивных действий, которые позволяют правильно оценивать других людей, что невозможно при исключительно вербальном общении.

Особый уход

Первая задача мышечной системы — поддержание мышечного тонуса, т.е. обеспечение начала движения, которое в свою очередь оказывает влияние на температуру тела. Осанка — термин, описывающий статическое положение тела, очень важно для полноценной работы мышечной системы.

Правильное положение тела способствует общему здоровью организма:

  • Оно позволяет полноценно дышать: глубоко и непрерывно.
  • Органы пищеварения не сжимаются, и происходит оптимально эффективное пищеварение.
  • Вес тела распределяется равномерно, что позволяет избежать проблем с осанкой.
  • Тело человека, имеющего хорошую осанку, выглядит красиво.

www.sweli.ru

Мышечная система человека

Движение неотъемлемая часть человеческой жизни. Движение человека невозможно без мышц. Без них человек не мог бы быть тем, кем он является. Мышцы помогают поддерживать наше тело в горизонтальном состоянии, выполнять различные виды деятельности от самых простых движений пальцами до акробатических номеров. Мышцы по своей структуре, типу и функциям очень отличаются.

Мышечная система человека – это система органов, которую образуют скелетные мышцы, приводящие в движение костную систему, несущую ответственность за движения человека.

Замечание 1

Мышцы представляют собой мышечную ткань, которая пронизана сосудами и нервными окончаниями. Большинство мышц человеческого тела парные. У разных людей мышечная система развита в разной степени. У профессиональных спортсменов она развита в наибольшей степени.

Типы мышечной ткани

Существует три типа мышечной ткани:

  • поперечнополосатые мышцы скелета;
  • поперечнополосатые мышцы сердца;
  • гладкие мышцы внутренних органов, сосудов и кожи.

Поперечнополосатые мышцы скелета — это упругая ткань, которая сокращается под влиянием нервных импульсов. Эта мышечная ткань нужна человеку для дыхания, движения, управления голосовыми связками. Скелетная мышечная ткань состоит из миоцитов.

Поперечнополосатые мышцы сердца отличаются от поперечнополосатых мышц скелета по строению и по функции. Сердечные мышцы сокращаются не по воле человека, за их сокращение отвечает вегетативная нервная система. Сердечная мышечная ткань состоит из кардиомиоцитов. Кардиомиоциты – это мышечные клетки сердца. Кардиомиоциты соединены между собой вставочными дисками.

Гладкие мышцы внутренних органов состоят в основном из веретенообразных мышечных волокон. Клетки в этом типе мышечной ткани соединены между собой нексусами. Особенность этих мышц заключается в том, что они могут воспроизводить спонтанную автоматическую деятельность. Этот вид мышечной ткани обладает большой пластичностью, что положительно сказывается на работе внутренних органов в состав которых она входит.

Строение мышцы

Мышца состоит из рыхлой и плотной ткани, сосудов, нервов. Основа мышцы – это пучки поперечнополосатых волокон. Вокруг мышцы находится эпимизий, который затем переходит в сухожилие.

Одни волокна прикрепляется к костям, а другие имеют опору на соединительно-тканных образованиях мышц.

Внутри мышцы проходят капилляры и нервные волокна благодаря им осуществляются кровоснабжение и двигательные импульсы.

Классификация мышц

Существует множество классификаций скелетных мышц. Классификации основаны на различных признаках, например, по форме, по направлению мышечных волокон, по расположению в теле человека, по функции, по соотношению к суставам.

По форме мышцы бывают квадратные, треугольные или круговые. По длине они делятся на короткие, длинные и широкие. По строению мышцы бывают веретенообразные. Чаще эти мышцы расположены на конечностях. Они прикрепляются к костям и отвечают за движение.

По ходу мышечных волокон очень различается много типов мышц. Среди них отмечают мышцы с прямым ходом и мышцы с поперечным ходом. Они в свою очередь делятся на одноперистые, двуперистые и многоперистые.

Мышцы также классифицируются по той функции, которую они выполняют. Мышцы могут выступать как сгибатели и разгибатели, могут выполнять отводящую и приводящую функцию. Так же в зависимости от исполняемой функции мышцы делятся на супенаторы, пронаторы, сжиматели, напрягающие, поднимающие и опускающие.

Мышцы делятся на группы так же по месту прикрепления. Мышцы могут прикрепляться к костям и к суставам.

По отношению к суставам, мышцы разделяют на односуставные, двусуставные и многосуставные. Многосуставные мышцы покрывают одно-суставные.

По положению мышцы могут подразделяться на поверхностные и глубокие. Мышцы могут быть наружными и внутренними, а также литеральными и медиальными.

Функции мышечной системы

Мышечная система имеет несколько основных функции:

  • движение
  • удерживание тела
  • производство тепла
  • формирующая
  • защитная

Сердечная мышечная ткань отвечает за сердцебиение, то есть помогает крови передвигаться по нашему организму. Висцерная мышечная ткань, которая представлена во внутренних органах помогает передвигать пищу и продукты жизнедеятельности по пищеварительному тракту. Иначе эта деятельность называется перистальтика. Скелетная мышечная ткань отвечает за движение человека. Мышечная ткань приводит в движение суставы. Эти мышцы осуществляют изотонической движение и изометрическое.

Скелетные мышцы помогают поддерживать наше тело в вертикальном положении. За это свойство отвечает мышечный тонус. Если мышечный тонус отсутствует, то человек теряет устойчивость.

Еще одна важная функция мышц — это поддержание тепла в организме. Мышцы, находясь в активном состоянии, продуцируют тепло, которое с помощью крови переносится в другие части организма и помогает поддерживать терморегуляцию. Излишнее тепло, например, во время физической активности выводится через потоотделение. Мышцы непосредственно реагируют на повышение и понижение температуры. Если температура внешней среды высокая, то мышцы расслабляются, если низкая, то напрягаются.

Мышцы также имеют функцию формирования тела и фигуры. Мышцы определяют внешнюю форму тела. Человек может самостоятельно регулировать свой мышечный объем.

Защитная функция мышц очень важна. Органы брюшной полости защищены мышцами пресса. Кости и суставы тоже в свою очередь находятся под защитой мышц. Они защищают кости и суставы от ушибов, повреждений, переломов. Не все кости и суставы охраняют мышцы, например, коленные суставы не покрыты мышцами поэту чаще других страдают от повреждений.

Замечание 2

Мышечная ткань восстанавливается достаточно быстро, примерно 2 недели требуется для полной регенерации мышечной ткани, кости и суставы, которые они защищают восстанавливаются значительно медленнее.

spravochnick.ru

Мышечная система

Скелетные мышцы формируют активную часть опорно-двигательной системы человека. Их сокращение обеспечивает перемещение тела и его отдельных частей в пространстве.

Замечание 1

Существенно, что с возрастом и в результате тренировок изменяется не число волокон скелетных мышц человека, а только их толщина. Число мышц постоянно — более 600, что составляет более половины массы тела.

Мышечная система человека делится на три группы соответственно частям тела: мышцы головы, туловища и конечностей.

Основные типы мышц

Анатомически мышцы делят на поперечнополосатые и гладкие, но функционально выделяют ещё и сердечную мышцу.

Скелетные мышцы образованы поперечнополосатой мышечной тканью, волокна которой собраны в пучки.

Сердечная мышца состоит из поперечнополосатых мышечных волокон, которые на определённых сливаются (переплетаются) друг с другом благодаря наличию нексусов (специальных связей).

В функциональном отношении различают три вида мышечной ткани, каждая из которых имеет свои отличия.

Волокна скелетной мышечной ткани вытянуты, цилиндрической формы, не могут ветвиться. Каждое волокно имеет много ядер. У них хорошо развита поперечная исчерчённость. Такие волокна способны быстро сокращаться под влиянием импульсов коры больших полушарий, которые поступают по соматических нервах.

Строение скелетных мышц

Основу скелетных мышц составляет поперечнополосатая мышечная ткань.

В каждой мышце есть активная сократительная часть (мышечное тело, брюшко) и пассивная несократительная — сухожилие.

Мышечное тело состоит из мышечных волокон, собранных в пучки. Волокна связаны между собой соединительной тканью, которая выглядит, как тонкая сетка.

Вся мышца снаружи так же покрыта плотной соединительнотканной оболочкой.

Сухожилия состоят из плотной соединительной ткани, коллагеновые волокна которой проникают в мышечное тело, а другим концом прикреплены к холмистостям костей.

К каждой мышце подходят кровеносные сосуды и нервы (двигательные и чувствительные).

Форма и размеры мышцы зависят от выполняемой ею работы.

По форме скелетные мышцы бывают длинные, короткие и широкие.

Длинные мышцы располагаются в основном на конечностях, они могут иметь несколько головок, прикреплённых на разных костях или в разных местах одной кости (дву-, три- и четырёхглавые).

Короткие мышцы расположены между отдельными позвонками и рёбрами.

Широкие мышцы находятся в основном на туловище и имеют форму пластов различной толщины.

Понятие о двигательной нервно — мышечной единице

Определение 1

Под двигательной (нервно-мышечной) единицей имеется в виду совокупность мотонейрона спинного мозга и иннервированных им миофибрилл.

В зависимости от скорости сокращения и стойкости к усталости различают медленные (S — “slow”) и быстрые (F — “fast”) двигательные единицы, которые, в свою очередь, делятся на стойкие к усталости (FR) и быстроутомляющиеся (FF).

Строение поперечнополосатого мышечного волокна

Мышца состоит из отдельных пучков, каждый из которых содержит большое количество мышечных волокон.

Определение 2

Мышечное волокно — основная (наименьшая) функциональная единица мышцы.

Каждое волокно покрыто плазматической мембраной и помещено в тоненькую трубочку соединительной ткани (эндомизиум).

Пучки волокон так же окружены соединительнотканными перегородками (перимизиумом).

Вся мышца расположена в чехле из соединительной ткани (эпимизиуме).

У большинства скелетных мышц оба их конца прикреплены к сухожилиям.

Мышечные волокна преимущественно уложены параллельно друг к другу, потому сила сокращения мышцы равна сумме усилий, который развивают отдельные волокна.

Каждое мышечное волокно, в свою очередь, состоит из многочисленных миофибрилл, в каждой из которых можно выделить отдельные нити.

Нити миофибрилл состоят из сократительных белков — миозина, актина, тропомиозина и тропонина.

Длина зрелых мышечных волокон может достигать длины самой мышцы, а их диаметр варьирует от 10 до 100 мкм.

Как уже указывалось, каждое волокно состоит из миофибрилл; это белковые структуры, погружённые в цитоплазму. Кроме того, в цитоплазме находятся митохондрии, саркоплазматический ретикуллюм и система поперечных трубочек, а также зёрна гликогена. Под световым микроскопом заметна характерная исчерчённость (чередование светлых и тёмных полос), свойственная всем миофибриллам. Именно потому скелетная мышца получила другое название — поперечнополосатая.

Быстрые и медленные мышцы

В большинстве случаев мышечное волокно контактирует с одним нервным окончанием — оно называется фазическим, поскольку на единичный нервный импульс отвечает фазическим единичным сокращением.

Мышцы млекопитающих делятся на быстрые и медленные. Быстрых волокон больше в мышцах, которые осуществляют быстрые движения, а медленных — в мышцах, которые участвуют в поддержании позы.

Структура миофибрилл

Мышечное волокно состоит из большого количества цилиндрических белковых элементов, которые называются миофибриллами.

Поперечная исчерчённость, свойственная волокну в целом, обусловленна упорядоченной структурой миофибрилл как в продольном, так и в поперечном направлениях. Эта упорядоченность связана с особенностями расположения белковых элементов мышцы — толстых и тонких нитей.

Толстые нити имеют диаметр около 11 нм, тонкие — 5нм.

На схеме расположения толстых и тонких нитей видно, что в поперечном разрезе они образуют гексагональную решётку, а в продольном — регулярно повторяемую структуру, состоящую из участков, которые перекрываются или не перекрываются. Рассматривая миофибриллу вдоль, можно заметить чередование светлых и тёмных полос, которое обусловлено различной светопроницательностью участков с толстыми и тонкими нитями.

На схеме показана структурная организация тонких и толстых нитей, а так же вызванная этим поперечная исчерчённость, которая наблюдается под световым микроскопом.

Наиболее заметными являются А-полосы и более светлые I-полосы, которые регулярно чередуются вдоль миофибриллы. Внутри I- полосы находится тёмная Z- линия (Z- диск), а внутри А-полосы — более светлая область, Н-зона. Н-зона делится пополам более тёмной М-линией, окружённой светлым участком — L-зоной (она заметна не всегда).

Определение 3

Такой регулярно повторяющийся участок между соседними Z-линиями называется сакромером.

Толстая нить состоит из белка миозина. Тонкая нить образована другими белками — актином, тропонином и тропомиозином.

Замечание 2

Актин и миозин способны образовывать комплекс, который называется актомиозином.

Расположение толстых и тонких нитей в области их взаимного перекрытия приводит к тому, что каждая толстая нить окружена шестью тонкими нитями, а каждая тонкая — тремя толстыми. Таким образом, тонких нитей в два раза больше, чем толстых.

Механизм сокращения мышечного волокна (теория скользящих нитей)

Согласно этой теории, во время мышечного сокращения происходит взаимное перемещение тонких и толстых нитей, при этом длина саркомера уменьшается, а длина нитей не изменяется.

Замечание 3

Собственно скольжение происходит благодаря реакциям между выступами миозиновых нитей и активными участками тонких нитей (каждый выступ сначала прикрепляется к актиновой нити, потом тянет её, вызывая скольжение, после отпускает её и перемещается вдоль тонкой нити к следующей точке прикрепления).

Основные механические изменения сопровождаются определённой последовательностью биохимических процессов.

  1. Поперечный мостик между миозином и актином размыкается. Это обеспечивается действием АТФ, с которой связывается миозин: АМ + АТФ → А + М ∙ АТФ (где А — актин, М — миозин)

  2. АТФ расщепляется на АДФ + Ф, в это время миозин (субфрагмент S1) изменяет конфигурацию перед тем, чем снова присоединиться к тонкой нити (продукты распада АТФ остаются связанными с миозином).

  3. Поперечный мостик миозина присоединяется к новому мономеру актина.

  4. Это приводит к отщеплению продуктов гидролиза АТФ и выделению энергии, за счёт которой осуществляется «рабочий ход» (поворот S1 и линейное перемещение актина).

Сила мышц

Определение 4

Сила мышцы определяется по максимальному грузу, который она может поднять, и максимальному напряжению, которое она может развить при условии изометрического сокращения.

Принято различать показатели максимальной силы, относительной анатомической силы, абсолютной силы и максимальной произвольной силы.

Определение 5

Максимальная сила — это такая сила мышцы, которую она развивает в изометрическом режиме при условии участия всех её двигательных единиц, их работы в тетаническом режиме (одно длительное сокращение мышцы без расслабления вследствие её частого повторяемого раздражения).

Мышца сокращается при длине покоя (длине, при которой мышца развивает максимальное напряжение). При произвольном напряжении мышцы достичь таких условий тяжело, потому максимальную силу определяют при электрическом раздражении нерва, который иннервирует мышцу.

Понятие максимальной силы мышцы теоретическое и характеризует потенциальные силовые возможности мышцы.

Определение 6

Относительная анатомическая сила — это отношение максимальной силы к анатомическому поперечнику мышцы (площади поперечного разреза мышцы, перпендикулярного к её длине).

Определение 7

Абсолютная сила мышцы — это отношение максимальной силы к её физиологическому поперечнику (площади поперечного разреза мышцы, перпендикулярного к расположению всех её волокон).

Определение 8

Максимальная произвольная сила — это сила, которую развивает мышца при максимальном произвольном сокращении.

Этот показатель характеризирует фактическую силу мышцы, которую она развивает при нормальных условиях, то есть степень реализации потенциальных возможностей мышцы (максимальной силы).

Замечание 4

Разница между этими двумя показателями называется силовым дефицитом.

Поскольку, многие мышцы человека имеют сравнительно большую площадь сечения, то они могут развивать значительное напряжение.

Пример 1

Сила, которую могут развить все мышцы тела здорового человека во время одновременного сокращения, составляет около 22 т, а лишь одна ягодичная мышца может развить силу 1,2 т.

Сила мышц зависит от величины поперечного сечения мышцы, её исходной длины, возраста, функционального состояния, температуры и др.

Статическая и динамическая работа мышц и их значение

Замечание 5

Работа мышц бывает статической (удерживание груза, поддержание позы — изометрический режим сокращения) и динамической (перемещение груза и движения костей в суставах).

Во время подъёма груза массой m динамическая работа А мышцы определяется результатом умножения силы тяготения, действующей на тело, на высоту подъёма h (или же величину укорочения мышцы):

А = Рh = mgh

Статическая работа определяется в результате умножения силы на время выполнения этой работы:

А = Рt.

Работа мышцы возрастает при увеличении массы груза, который поднимается, но только до определённой границы: при большой массе груза высота подъёма оказывается настолько малой, что работа остаётся неизменной, или же уменьшается.

Замечание 6

Максимальная работа выполняется мышцей при средней её нагрузке («закон средних нагрузок»).

Физическая работа характеризуется количеством мышц, которые берут в ней участие, динамикой их сокращения и расслабления, силой и длительностью мышечной работы.

Замечание 7

Методика, позволяющая получить графическую запись выполняемой работы, называется эргографией, прибор для записи — эргографом, а саму запись — эргограмой.

Усталость мышц

Определение 9

Усталость мышц — это временное снижение или потеря трудоспособности мышцы, наступающее как результат его работы и исчезает после отдыха.

Усталость мышцы наступает в результате развития процесса усталости (отказ от работы) в двигательных нервных центрах ЦНС, нервно — мышечном синапсе и непосредственно в мышце в результате накопления продуктов обмена и недостатке кислорода.

При условии усталости может возникнуть неконтролируемое непрерывное сокращение мышцы (контрактура мышцы), вызванное истощением АТФ в саркоплазме, что делает невозможным расслабление мышечных волокон.

Замечание 8

Ускоренное обновление трудоспособности усталых мышц при условии активного отдыха, что является физиологическим обоснованием преимущества активного отдыха в кратковременные перерывы в работе в сравнении с пассивным, называется эффектом Сеченова.

Гиподинамия

Под гиподинамией понимают состояние пониженной двигательной активности, вызванное общей мышечной слабостью в результате заболевания (крайний случай — динамия) или пребыванием в условиях сниженной гравитации, невесомости, постельного режима и т. п., когда нагрузка на мышцы резко уменьшается. Длительное пребывание в таких условиях сопровождается атрофическими изменениями в мышцах (атрофия от неиспользования), общей физической детренированостью, детренированностью сердечно — сосудистой системы, изменениями солевого баланса, системы крови, иммунитета, деминерализацией костей и др.

Иногда вместо термина «гиподинамия» используют термин «гипокинезия» (уменьшённая подвижность), что не является правомерным.

spravochnick.ru

Мышечная система

Любое внешнее проявление мозговой деятельности организма сводится к мышечному действию. Изучением мышц занимается миология. Различают два типа мышечной ткани: гладкая (неисчерченная) и поперечно-полосатая (исчерченная).

Гладкие мышцы осуществляют движения стенок внутренних органов, кровеносных и лимфатических сосудов. В стенках внутренних органов мышцы, как правило, располагаются в виде двух слов: наружного продольного и внутреннего кольцевого. В стенках артерий они формируют спиралевидные структуры.

Структурная единица гладкой мышечной ткани — миоцит с одним ядром. Функциональная единица — группа миоцитов, окруженных соединительной тканью и иннервируемых нервным волокном, где нервный импульс передается с одной клетки на другую по межклеточным контактам (рис. 11). Однако в некоторых гладких клетках, например, сфинктер зрачка, иннервируется каждая клетка.

1

2

3

Рисунок 11. Гладкая мышечная ткань: 1 – нервное волокно; 2 – межклеточный контакт; 3 – ядро миоцита

Гладкие мышцы совершают два вида сокращений: длительные тонические (например, сфинктеры полых органов или гладкие мышцы кровеносных сосудов) и относительно медленные движения, которые зачастую ритмичны (например, маятникообразные и перистальтические сокращения кишечника). Гладкие мышцы обладают автоматией и сокращаются под влиянием импульсов, возникающих в нервно-мышечных элементах самих органов.

Гладкие мышцы отличаются пластичностью, — после растяжения они долго сохраняют длину, которую получили в связи с растяжением.

Структурной единицей исчерченной мускулатуры являются поперечно-полосатые цилиндрической формы многоядерные мышечные волокна длиной от 1 до 40 мм, толщиной до 0,1 мм. Ядра в волокне располагаются по периферии (рис. 12).

1

1 2

Рисунок 12. Поперечно-полосатые мышечные волокна: 1 – ядро волокна; 2 – нервное волокно

Саркоплазма волокна содержит много митохондрий и большое количество миоглобина — белка, который подобно гемоглобину может связывать кислород. В зависимости от толщины волокон и содержания в них миоглобина различают красные, белые и промежуточные поперечно-полосатые мышечные волокна. Белые волокна самые толстые они сокращаются быстрее, но быстрее устают, т.к. содержат меньше всего миоглобина и митохондрий. Красные волокна более других богаты миоглобином и митохондриями, что позволяет им сокращаться длительнее, однако, они самые тонкие. У человека мышцы содержат все типы волокон; в зависимости от функции мышцы в ней преобладает тот или иной тип волокон. У длительно летающих птиц, например, в грудных мышцах преобладают красные волокна, в то время как у кур — белые.

Каждое мышечное волокно несет на себе чувствительное нервное окончание и моторную бляшку, через которую передается импульс к сокращению мышцы.

Чувствительные нервные окончания воспринимают «мышечное чувство» — информацию о тонусе мышечных волокон, степени их сокращения, а в сухожилиях — «сухожильное чувство» — напряжение — и передают его по нервам в мозг.

Скелетные мышцы мало пластичны, они сокращаются сразу же после прекращения их растяжения. Скелетные мышцы приводят в движение кости, активно изменяют положение тела человека и его частей, участвуют в образовании стенок грудной, брюшной полостей, таза, входят в состав стенок глотки, верхней части пищевода, гортани, осуществляют движения глазного яблока и слуховых косточек, дыхательные и глотательные движения. Скелетные мышцы удерживают тело человека в равновесии, перемещают его в пространстве. Общая масса скелетной мускулатуры у взрослого человека составляет 30–35% массы тела (рис. 13).

Рисунок 13. Мышечная система человека

Систематическая интенсивная работа мышцы способствует увеличению массы мышечной ткани. Это явление названо рабочей гипертрофией мышцы. В основе гипертрофии лежит увеличение массы цитоплазмы мышечных волокон и число содержащихся в них миофибрилл, что приводит к увеличению диаметра каждого волокна. Увеличению числа миофибрилл способствует преимущественно статическая работа, требующая большого напряжения (силовая нагрузка). Динамическая мышечная работа, производимая без особых усилий, не вызывает гипертрофии мышцы.

У тренированных людей, многие мышцы которых гипертрофированы, мускулатура может составлять до 50% массы тела.

У человека около 400 поперечно-полосатых мышц, сокращающихся произвольно под воздействием импульсов, поступающих по нервам из ЦНС.

Мышечные пучки формируют брюшко мышцы, переходящее в сухожильную часть. Головка мышцы начинается от одной кости, сухожилие (хвост) — прикрепляется к другой кости (рис. 14).

1

2

3

Рисунок 14. Веретенообразная мышца: 1 – головка мышцы; 2 – брюшко мышцы; 3 – сухожилие

Сухожилие мало растяжимо, обладает значительной прочностью и выдерживает огромные нагрузки. Сухожилие четырехглавой мышцы бедра способно выдержать растяжение силой в 600 кг, Ахиллово сухожилие — 400 кг. Это возможно благодаря строению плотной оформленной соединительной ткани, из которой образованы сухожилия: параллельные пучки коллагеновых волокон составляют пучки первого порядка. Рыхлая волокнистая неоформленная соединительная ткань окутывает несколько пучков первого порядка, образуя пучки второго порядка, которые все вместе снаружи покрыты футляром из плотной волокнистой соединительной ткани.

Форма мышц зависит от выполняемой функции. Различают следующие формы мышц:

веретенообразные (конечностей), лентовидные (стенок туловища), одно-, дву- и многоперистые (дельтовидная), дву-, трех-, четырехглавые, двубрюшная, циркулярные (сжиматели вокруг отверстий тела человека) (рис. 15).

Рисунок 15. Формы мышц: 1 — веретенообразная; 2 — лентовидная; 3 — многоперистая; 4 — двуглавая;

5 — двубрюшная; 6 — циркулярная (круговая мышца рта)

Мышцы могут прикрепляться к смежным костям и действовать на один сустав или иметь длинные сухожилия, которые перекидываются через два и большее число суставов. Некоторые мышцы прикрепляются к костям, не соединяющимся между собой при помощи сустава (челюстно-подъязычная мышца), другие только одним своим концом прикрепляются к костям (мышцы языка). Некоторые мышцы вплетаются в кожу или другие ткани.

Мышцы снабжены вспомогательными аппаратами: фасции, фиброзные и синовиальные влагалища сухожилий, синовиальные сумки, блоки. Фасция — это соединительно-тканная оболочка мышцы, ее чехол. Фасции отграничивают мышцы друг от друга, выполняют механическую функцию, создавая опору для брюшка при сокращении, ослабляют трение мышц.

studfiles.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *