Содержание

Заболевания опорно-двигательного аппарата

Масштабы проблемы

Нарушения и болезни костно-мышечной системы – это более 150 нарушений здоровья, поражающих опорно-двигательный аппарат. Они варьируются в широком диапазоне: от острых и кратковременных явлений — переломов, растяжений и вывихов — до пожизненных нарушений, сопровождающихся постоянным снижением функциональных возможностей и инвалидностью. Нарушения и болезни костно-мышечной системы обычно характеризуются болевыми ощущениями (нередко постоянного характера), снижением подвижности, ухудшением моторики и функциональных возможностей в целом, что ограничивает способность человека к трудовой деятельности. 

Нарушения и болезни костно-мышечной системы включают в себя нарушения, поражающие:

  • суставы, в частности, остеоартрит, ревматоидный артрит, псориатический артрит, подагру, анкилозирующий спондилоартрит;
  • костные ткани, в частности, остеопороз, остеопению и связанные с этим переломы в результате хрупкости костей или травм;
  • мышцы, в частности, саркопению;
  • позвоночник, в частности, люмбаго и цервикалгию;
  • различные части тела или системы организма, в частности, регионарные и распространенные болевые синдромы и воспалительные заболевания, такие как заболевания соединительных тканей и васкулит, характеризующиеся симптомами со стороны костно-мышечной системы, или системная красная волчанка.  

Помимо всего, нарушения и болезни костно-мышечной системы являются самым главным фактором, обусловливающим глобальную потребность в реабилитационных услугах. Они входят в число основных причин, определяющих спрос на такие услуги для детей, а примерно две трети взрослого населения, нуждающегося в реабилитационных услугах, – это люди, страдающие от нарушений и болезней костно-мышечной системы.

Распространенность проблемы

Данные недавнего исследования «Глобальное бремя болезней» (ГБВ) свидетельствуют о том, что примерно 1,71 миллиарда человек в мире страдают от нарушений и болезней костно-мышечной системы (1). Хотя распространенность болезней костно-мышечной системы различается в зависимости от возраста и диагноза, от них страдают люди любого возраста повсюду в мире. Наиболее сильно затронуто такими болезнями население стран с высоким доходом (441 миллион человек), далее идут жители Региона Западной части Тихого океана (427 миллионов человек) и Региона Юго-Восточной Азии (369 миллионов человек). Нарушения и болезни костно-мышечной системы также занимают ведущее место среди факторов инвалидности в мире: на них приходится примерно 149 миллионов лет жизни, прожитых с инвалидностью, что в глобальном масштабе составляет 17% всех лет, прожитых с инвалидностью, обусловленной разными причинами.

На люмбаго приходится основная доля общего бремени нарушений и болезней костно-мышечной системы. Среди других факторов, влияющих на это бремя, следует назвать переломы (436 миллионов человек в мире), остеоартрит (343 миллиона человек), прочие травмы (305 миллионов человек), цервикалгия (222 миллиона человек), ампутации (175 миллионов человек) и ревматоидный артрит (14 миллионов человек) (1).

Хотя распространенность нарушений и болезней костно-мышечной системы увеличивается с возрастом, ими страдают и более молодые люди, причем нередко в годы наибольшей экономической активности. Люмбаго, например, является основной причиной преждевременного прекращения трудовой деятельности. Неблагоприятные последствия этого для общества поистине огромны не только с точки зрения прямых затрат на медико-санитарное обслуживание, но и с точки зрения косвенных издержек (которые выражаются в пропусках работы, снижении производительности). Кроме того, нарушения и болезни костно-мышечной системы тесно связаны со значительным ухудшением психического здоровья и снижением функциональных возможностей. Согласно прогнозам, в будущем число людей, страдающих от люмбаго, будет только возрастать, причем наиболее быстрыми темпами – в странах с низким и средним уровнем дохода (2).

Разработанный ВОЗ инструмент для оценки потребностей в реабилитационных услугах WHO Rehabilitation Need Estimator предоставляет уникальную возможность получать данные о распространенности нарушений и болезней костно-мышечной системы в отдельных странах, регионах и в мире в целом, а также данные о годах жизни, прожитых с инвалидностью, обусловленной нарушениями и болезнями костно-мышечной системы.

Деятельность ВОЗ

В 2017 г. ВОЗ учредила инициативу «Реабилитация-2030: призыв к действиям» в целях привлечения внимания к острой неудовлетворенной потребности в реабилитационных услугах во всем мире и к важности укрепления систем здравоохранения в части предоставления реабилитационных услуг. Эта инициатива знаменует собой новый стратегический подход к глобальному реабилитационному сообществу, акцентируя внимание на том, что:   

  • Реабилитационные услуги должны быть доступны для всего населения на протяжении всей жизни. Это относится и ко всем людям с нарушениями и болезнями костно-мышечной системы.
  • Усилия по укреплению реабилитационных услуг должны быть направлены на то, чтобы оказывать поддержку системам здравоохранения в целом и интегрировать услуги по реабилитации во все уровни медико-санитарной помощи.
  • Реабилитация является одной из важнейших услуг здравоохранения и имеет огромное значение для достижения всеобщего охвата услугами здравоохранения.

Данная инициатива была учреждена в значительной степени из-за того, что многие страны не имеют должного потенциала для удовлетворения существующих потребностей в реабилитационных услугах, в том числе потребностей людей с нарушениями и болезнями костно-мышечной системы, не говоря уже о прогнозируемом росте спроса на такие услуги в связи с наблюдаемыми тенденциями, связанными со здоровьем и демографией. Страны зачастую не придают первостепенного значения проблеме реабилитации, и эта сфера по-прежнему не обеспечена необходимыми ресурсами. В результате бесчисленное множество людей не имеют доступа к реабилитационным услугам, что приводит к ухудшению состояния их здоровья, дальнейшим осложнениям и последствиям, которые будут ощущаться ими на протяжении всей жизни. В некоторых странах с низким и средним уровнем дохода более 50% населения не получают реабилитационных услуг, в которых они нуждаются.

ВОЗ оказала поддержку более чем 20 странам во всех регионах мира в целях укрепления их систем здравоохранения в части совершенствования реабилитационных услуг. Число стран, обращающихся в ВОЗ с просьбой о технической поддержке, постоянно возрастает.

Дополнительную информацию об инициативе «Реабилитация-2030: призыв к действиям» можно найти по следующей ссылке.

Кроме того, ВОЗ занимается разработкой пакета реабилитационных вмешательств (в том числе в отношении переломов конечностей, остеоартрита, ревматоидного артрита, люмбаго и ампутаций), содержащего перечень приоритетных и основанных на фактических данных реабилитационных вмешательств и ресурсов, необходимых для их безопасного и эффективного осуществления.  Эти вмешательства сохранят свою актуальность для людей на протяжении всей жизни и всего континуума медицинского обслуживания, на всех платформах оказания услуг и во всех регионах мира, причем особое внимание будет уделяться вопросам, возникающим в условиях низкой или средней обеспеченности ресурсами.

Пакет станет онлайновым ресурсом с открытым доступом, предназначенным для различных целевых аудиторий. Министерства здравоохранения смогут планировать интеграцию реабилитационных вмешательств в свои национальные системы медико-санитарных услуг; исследователи получат возможность выявлять пробелы в научных исследованиях, касающихся реабилитации; преподаватели университетов смогут разрабатывать программы обучения для подготовки специалистов в области реабилитации; медицинские работники смогут планировать и включать конкретные реабилитационные вмешательства в свои программы по оказанию реабилитационных услуг.

Дополнительную информацию о пакете реабилитационных вмешательств в отношении нарушений и болезней костно-мышечной системы можно найти по следующей ссылке.

ВОЗ планирует провести в начале 2022 г. совещание заинтересованных сторон, посвященное нарушениям и болезням костно-мышечной системы. Цель совещания – составить план дальнейшей более конкретной деятельности ВОЗ, направленной на укрепление реабилитационных услуг в отношении нарушений и болезней костно-мышечной системы в различных странах и выявление факторов, способствующих и препятствующих успешному осуществлению глобальной повестки в области реабилитации.


(1)    Cieza, A., Causey, K., Kamenov, K., Hanson, S. W., Chatterji, S., & Vos, T. (2020). Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 396(10267), 2006-2017.

(2)    Hartvigsen J, Hancock MJ, Kongsted A, et al. What low back pain is and why we need to pay attention. Lancet 2018; 391: 2356–67.

 

 

11 приложений по анатомии человека для студентов и школьников

Анатомия человека — это чрезвычайно сложный раздел биологии. Если вы станете изучать ее глубже, то узнаете такие вещи о своем теле, о которых даже не догадывались. Эти знания будут особо полезны для студентов медицинских вузов.

Чтобы изучать анатомию, больше не нужны толстые книги. Мы составили список лучших приложений в данной области, в том числе бесплатных, которые вы можете найти для Android и iPhone. Они станут незаменимыми помощниками для студентов-медиков, врачей и всех тех, кто заинтересован в повышении уровня своих знаний. Итак, давайте их рассмотрим.

3D Атлас

С помощью 3D Атласа можно легко рассмотреть любую анатомическую структуру под нужным углом. 3D-модели отличаются высоким уровнем детализации, с разрешением до 4000 пикселей. В приложении есть модели всех систем человека: костно-мышечной, сердечно-сосудистой, нервной (включая органы чувств – глаз и ухо), дыхательной, пищеварительной, мочеполовой, эндокринной и лимфатической.

Вы можете поворачивать и масштабировать каждую модель, делать определённые части прозрачными, просматривать мышцы на различных уровнях, от поверхностных до глубоких. Кроме того, есть функция поиска и фильтр, позволяющий скрывать или отображать каждую из систем.

Есть также описание мышц, но оно доступно только на английском языке. В нем содержится  информация о месте крепления, иннервации и ее функциях. Есть поддержка 11 языков, среди которых есть латинский, английский, русский. Термины могут отображаться на двух языках одновременно.

Загрузить приложение можно бесплатно, однако, для использования всех возможностей требуется покупка платной версии. Бесплатная версия позволяет только оценить функционал, большая часть информации в ней недоступна.

Human Body Educational VR

Human Body Educational VR содержит всю информацию о теле для начинающих врачей и учащихся. Разработчики позиционируют его для возраста от 8 до 18 лет, хотя имеющиеся здесь знания могут быть полезны для всех. Есть отдельные версии с женским организмом и мужским.

Приложение содержит трехмерные фигуры, может увеличивать органы, скелетную систему, совместимо с очками виртуальной реальности и оснащено специальной кнопкой для включения этой функции. Приложение бесплатное, нет рекламы или покупок.

Внутренние органы

Приложение с говорящим названием «Внутренние органы» показывает трехмерные модели внутренних органов с их кратким описанием. Однако отображаемая информация больше пригодится школьникам — описания недостаточно подробны для людей, профессионально занимающихся медициной.

Любую модель можно повернуть и увеличить, скрыть или показать информацию, а также выбрать отображение женских или мужских органов. Доступна анимация, позволяющие увидеть работу выбранного органа.

Anatomy Learning

Anatomy Learning — это универсальное приложение, которое детализирует каждую часть человеческого тела с помощью трехмерных изображений. Хотя оно все еще находится в разработке, качество изображений — превосходно.

Приложение работает только при наличии доступа в интернет. На это есть веская причина: каждое изображение содержит множество деталей и указателей, из-за чего они могли бы занять много места в памяти телефона. Именно по этой причине разработчики решили не делать 3D-изображения доступными в автономном режиме. Чтобы посмотреть трехмерные изображения на большом экране можно посетить сайт AnatomyLearning.com с компьютера.

BioDigital Human

BioDigital Human позволяет выделять отдельные части тела и фокусироваться на них, что делает его идеальным инструментом для студентов. В нем содержится более 1 000 интерактивных 3D-моделей и более 300 флеш-карт, каждая из которых содержит изображение, которое дает подробную информацию о конкретной части тела.

Флеш-карты также содержат ссылки на популярные сайты, чтобы предоставить дополнительную информацию, если стандартного описания недостаточно. В дополнение к этому каждая флеш-карта может вести к другим соединительным частям тела, чтобы улучшить понимание анатомии.

Каждый орган анализируется отдельно, подробно раскрываются его функции. Нет ограничений на создание скриншотов или комментирования каждого изображения.

Приложение доступно для Android и iPhone.

Complete Anatomy

Приложение Complete Anatomy, разработанное группой ученых и исследователей, предоставляет полное виртуальное рассечение всего человеческого тела, чтобы дать студентам реальное понимание процесса операции или вскрытия. Оно идеально подойдет для подготовки медиков. Учитывая большую базу данных Complete Anatomy, приложение занимает около 1,5 ГБ места на момент загрузки. Поэтому убедитесь, что у вас достаточно свободного места, чтобы избежать неприятных сюрпризов.

Совсем недавно появился режим презентации. Все элементы управления в лекции теперь централизованы в нижней части экрана, а интерфейс был минимизирован и оптимизирован для совместного использования экрана. А также появился новый инструмент — указатель. С его помощью вы можете выделять важные области на любой лекции.

После установки вы получаете доступ к 17 000 интерактивным моделям, которые помогут лучше изучить тело человека. Вдобавок идут курсы от экспертов в разных областях: анатомия, ультразвук, обследование трупа, клинические корреляты. Кроме того, Complete Anatomy предлагает более 1 500 анимаций по кардиологии, стоматологии, фитнесу, офтальмологии, ортопедии и многому другому.

Доступно для Android и iPhone.

Essential Anatomy 5

Essential Anatomy 5 содержит очень подробное описание человеческого тела. Всего насчитывается более 8 200 различных структур для самостоятельного изучения.

Вместо того чтобы листать сотни страниц для нахождения органов и структур, Essential Anatomy 5 упрощает поиск нужной информации. Изображения дополняются описаниями с большой детализацией.

Human Anatomy Atlas

Human Anatomy Atlas дает отличное представление о внутренней работе человеческого тела. Вместо информации об отдельных частях тела, которые трудно собрать воедино без должных знаний, приложение делает широкие темы более понятными.

Здесь есть медицинский справочник с 3D-атласом мужского и женского тела, более 4 600 детальных структур. Особенность приложения — возможность редактировать и делиться моделями с коллегами. Это скорее подробный учебник, а не простое справочное руководство.

Teach Me Anatomy

Приложение Teach Me Anatomy содержит более 250 подробных статей на английском языке почти по всем аспектам анатомии человека. Кроме того, есть доступ к 800+ иллюстрациям высокой четкости, а также клиническим изображениям для справки.

Все данные можно сохранять на телефон для просмотра в автономном режиме, но потребуется много свободного места. Есть доступ к тестам, которые состоят из 800 вопросов с несколькими вариантами ответов. Они также на английском языке.

IMAIOS

Приложение IMAIOS представляет информацию очень структурировано. Для лучшего понимания весь организм разделен на отдельные темы. Среди дополнительных функций можно отметить возможность включать или отключать метки, производить поиск по индексу, создавать заметки и увеличивать иллюстрации. IMAIOS идеально подойдет для глубокого изучения анатомии, а не разрозненных определений.

3D Bones and Organs

3D Bones and Organs — это отличная альтернатива обычным учебникам: помимо изучения базовой анатомии человека, доступен просмотр костей и органов. Это может быть очень полезно для учащихся, которые только начинают свою медицинскую карьеру. Разработчики утверждают, что вся информация взята из Википедии и учебника по анатомии. Здесь даже есть викторина для проверки знаний, но она на английском языке.

Чтобы легче ориентироваться в информации, разработчики создали функцию закладок, которая позволяет быстро вернуться на нужную страницу. А также есть возможность вращать 3D-модели, увеличивать или уменьшать масштаб нужного органа.

Мышцы человека, анатомия мышечной системы, классификация, виды и функции, строение мышечного пучка, волокна, биомеханика мышц

Огромную роль в активной и здоровой жизни человека играют его мышцы. Независимо от строения и расположения, они выполняют общие функции — обеспечение работоспособности органов и движения тела.

Структура мышц

Активность человека, его дыхание, употребление пищи и другие процессы зависят от мышц. Многие специалисты называют мускулы органом, указывая на их неразрывную связь с жизнью организма.

Строение и работу мышечной ткани изучают такие науки, как анатомия, биология и биомеханика. Они рассматривают процессы, протекающие в мускулатуре при нагрузке и расслаблении.

Мышца — это сложная структура из эластичной ткани, которая отвечает за движение человека и работу его органов. Она состоит из множества клеток — миоцитов, собранных в параллельные волокна. Форма и размер клеток зависят от вида мускулы. Клетки объединяются в волокна и плотные пучки, пронизанные сосудами и нервными окончаниями. В эти связки мозг посылает сигнал о напряжении или расслаблении, улавливает боль, контролирует процесс обмена веществ. Вся эта сложная структура покрыта специальной защитной оболочкой и крепится к сухожилию.

Рис. 1. Общее строение мышцы

Сухожилие представляет собой эластичное образование, прикрепляющее мышцы к скелету. Оно защищает нервы и сосуды мускул от механических повреждений, а также создает дополнительную поддержку для органов. Благодаря креплению сухожилий к костям, человек получает возможность управлять конечностями.

Важно! Размер сухожилий зависит от местоположения в теле. Самые длинные сухожилия находятся в конечностях, а самые широкие — в брюшной области. Прочность сухожилий зависит от силы прикрепленной к ним мышцы.

Главная особенность мышц — способность к сокращению. Нервные импульсы, посылаемые мозгом в конечности или органы человека, стимулируют пучки миоцитов и проводят в них определенные химические реакции. Напряженный мускул на какое-то время становится короче, после чего снова расслабляется. Во время сокращений связки и мускулы приближаются друг к другу, подтягивая кости скелета или стимулируя работу внутренних органов.

Важно! Общее количество мышц в человеческом теле больше 640. Около 400 из них составляют скелетные, или двигательные, формирующие торс и мимику лица.

Функции мышц

В зависимости от вида, мышцы обладают рядом функций:

  • Двигательная. Обеспечивает способность организма перемещаться в пространстве и управлять движением конечностей.
  • Опорная. Помогает поддерживать скелет человека.
  • Стабилизация суставов. Сохраняет подвижность конечностей, снижает риск повреждения сустава.
  • Тепловыделение. Позволяет организму не перегреваться при физических нагрузках, поддерживая оптимальную температуру тела.
  • Реакция на раздражители. Мышцы позволяют человеку закрывать глаза, щуриться при ярком свете, выражать эмоции и взаимодействовать с другими людьми с помощью мимики.
  • Обеспечение жизненно важных процессов организма. Работа сердца, дыхание, пережевывание и усвоение пищи — за все эти процессы отвечает мускулатура человека.

Мускульная ткань различается по внешнему виду и функциям, в зависимости от местоположения в организме, а также от строения, размера и формы миоцитов. Все миотические волокна можно разделить на группы и типы для более понятного и подробного изучения.

Рис. 2. Типы мышц по структуре

Типы мышц по структуре

Наиболее популярным является деление мышц по структуре на:

  • Гладкие
  • Скелетные
  • Миокард

Гладкие

Гладкие мышцы формируют ткани внутренних органов и кожу человека. Их структура более однородная, чем у скелетных мускул, а сокращения происходят с медленной скоростью. Кроме того, гладкие ткани могут подолгу находиться в напряженном состоянии, не затрачивая много энергии и не утомляясь.

Важно! Клетки данного вида мышц находятся в органах дыхания, мочеполовой системе, желудочно-кишечном тракте. Их работа происходит, независимо от воли и внимания человека, и выполняет важную функцию в работе внутренних органов и теплообмене кожи.

Скелетные

Скелетные мышцы образуют опорно-двигательную систему тела и мимику лица. Свое название получили вследствие крепления непосредственно к костям скелета человека. Они отличаются высокой эластичностью, способностью к быстрой регенерации поврежденных участков и высокой проводимостью нервных импульсов.

Рис. 3. Мышцы синергисты и антагонисты

Это — самая большая и часто изучаемая группа мышц, состоящих из поперечно-полосатой ткани. Структуру мускул образуют чередующиеся светлые и темные волокна, цвет которых зависит от скорости сокращений и уровня выносливости клеточной ткани. Из-за внешнего вида скелетные мышцы называют поперечно-полосатыми, а из-за функции передвижения и сгибания конечностей — двигательными.

Важно! В человеческом теле двигательные мускулы могут занимать от 30 до 50%, в зависимости от пола и физического развития человека. Профессиональные бодибилдеры могут превышать эту норму и увеличивать объем мышечной массы до невероятных 70%. В пожилом возрасте уровень мускульной массы может упасть до 25% от объема всего тела.

Скелетные мышцы обычно делят на группы, исходя из расположения в теле:

  • Голова и лицо. Здесь находится огромное количество маленьких мускул, например, мимические, жевательные, височные и круговая мышца, отвечающая за подвижность глаз.
  • Шея. Ее поддерживают кивательная, длинная и лестничная мышцы, отвечающие за вращения головы.
  • Плечи и руки. За их движение отвечают двуглавая, трехглавая, дельтовидная мышцы и лучевой сгибатель запястья.
  • Грудь и спина. Торс человека формируют большая и малая мышцы груди, а также трапециевидная, широчайшая, ромбовидная и многие другие группы спинного отдела.
  • Пресс. Позволяет дополнительно поддерживать, наклонять и поворачивать тело благодаря внутренним и наружным связкам косых и прямых волокон.
  • Бедра и ноги. В нижнем отделе туловища сосредоточены самые сильные и выносливые мышцы. Они позволяют человеку ходить, приседать, сгибать и разгибать ноги, поднимать большую нагрузку. В этой группе самыми известными являются ягодичные, берцовые, икроножные и тонкая мышцы бедра.
  • Рис. 4. Строение миокарда

    Миокард

    Миокард — мускульный участок сердца, отвечающий за создание ритмичных сокращений, или сердцебиения. Основную массу сердца человека занимает именно миокард, состоящий из поперечно-полосатой ткани.

    Благодаря наличию мышечной ткани в сердце, этот важный орган непрерывно обрабатывает нервные импульсы, транспортирует по организму кислород и другие полезные вещества, а также быстро реагирует на любые внешние изменения и нагрузки. Неправильная частота и сила сокращений миокарда приводит к болезням сердца и даже к летальному исходу.

    Типы мышц по форме

    Еще одним популярным способом классификации мышц является деление по форме на три типа:

    • Широкие — находятся в области спины, груди и живота, имеют широкое сухожилие. Контролируют движения туловища и рук, помогают при дыхании.
    • Длинные — расположены в руках, ногах, груди,  шеи и отвечают за подвижность тела, наклоны и сгибание конечностей.
    • Короткие — отличаются маленьким размером, дополнительно помогают контролировать тело при движении. К этой группе относится короткая приводящая мышца бедра.

    Типы мышц по размещению волокон

    По размещению волокон мускульная ткань может быть:

    • Прямой
    • Поперечной
    • Круговой
    • Косой

    Другие критерии классификации

    Существует еще множество способов сортировать типы мышечной ткани по расположению в теле, особенностям строения и функциональности. Все мускулы, несмотря на различия в структуре, играют важную роль в жизни человека.

    Важно! Работу практически любого внутреннего органа, физическую выносливость и кровоснабжение всех участков тела невозможно представить без участия миоцитов. Их сокращение зачастую происходит без контроля человека, превращая жизнедеятельность организма в сложный автоматизированный процесс.

    Рис. 5. Функции мышц

    Выше приведены самые известные типы двигательных мышц, которых насчитывается около 400. При движении туловища или конечностей задействованы несколько типов мускульной ткани, что позволяет человеку сгибаться, выдерживать статическую нагрузку и перемещаться в пространстве без вреда для позвоночника и суставов.

    Важно! Для легкого и увлекательного изучения анатомии и мускулатуры рекомендуем использовать 3d атлас человеческого тела. Объемные модели сопровождаются подробным описанием и позволяют выучить, где находятся основные группы мышц, а также их названия на латыни. Многие атласы работают онлайн, и, в отличие от изучения анатомии по фото, позволяют рассмотреть самые микроскопические детали.

    Взаимосвязь тонуса мышц и здоровья человека

    Особое внимание скелетным мышцам уделяет наука биомеханика, подробно рассматривающая механизмы движения каждого мускула. Знания о строении двигательных мышц необходимо при занятиях фитнесом и профессиональным спортом. Хорошо развитые мускулы, приведенные в тонус, формируют здоровое, сильное и внешне привлекательное тело.

    Важно! Строение мышц и мышечная анатомия в целом практически одинакова у обоих полов. Однако женщины обладают менее развитой и объемной мускулатурой, чем мужчины. Объем и сила мышц зависят от гормона тестостерона, который в большом объеме синтезирует мужской организм, и в 10 раз меньше выделяется в женском теле.

    При тренировке мышц необходимо соблюдать регулярность и правильно дозировать нагрузку. Рост мышечной ткани происходит за счет микроразрыва волокон, которые заполняются строительным материалом — белком. При агрессивных тренировках структура мышц не успевает восстановиться, а сокращение нагрузки приводит к ослаблению мышечного тонуса.

    Избыток мышечной ткани и его последствия

    Фотографии бодибилдеров, будто полностью состоящих из мышц, поражают своей физической формой. Но такие картинки не имеют ничего общего с эталоном здоровья. Переизбыток мускульной массы не менее опасен, чем ожирение.

    Рис. 6. Функции мышц ног

    В норме мышечная анатомия тела рассчитана на определенную нагрузку. Организм знает, сколько энергии требуется на поддержание той или иной группы мышц в тонусе, какой вес они способны поднять. Гипертрофированные мышцы, или чрезмерно перекаченные, со временем теряют эластичность и быстроту сокращений в нервах. Напряженные мускулы перестают справляться с выведением токсинов и продуктов обмена. Человек, не знающий меры при спортивной нагрузке, со временем становится неповоротливым, сильнее утомляется, а его мышцы оказываются более уязвимыми к разрывам и растяжениям.

    Слабый тонус и его последствия

    Слабый тонус мышц также опасен для человека. Плохо развитый мышечный корсет не позволяет полноценно поддерживать позвоночник, ухудшает осанку и запускает процессы смещения внутренних органов. Нарушается правильная работа пищеварительной системы, возникают боли в спине и животе. Сердечная мышца, не знакомая с нагрузками, плохо справляется с функцией кровоснабжения.

    Важно! Люди, избегающие физических нагрузок, чаще сталкиваются с усталостью, сонливостью, непонятной ломотой в теле и заболеваниями сердечно-сосудистой системы. А поскольку с возрастом мышцы теряют объем и силу, без тренировок пожилые люди становятся очень слабыми и болезненными.

    Гармонично развитый мышечный корсет не только улучшает внешние данные тела, но и помогает переносить более тяжелые нагрузки. Конечно, не все группы мышц можно тренировать. Гладкие ткани внутренних органов или кожные покровы сокращаются, независимо от желания человека. Но здоровый образ жизни, умеренная физическая нагрузка и правильная работа сердца обогащают мускульные ткани кислородом и поддерживают здоровый тонус всего организма.

    Узнайте еще больше интересных фактов о мышцах человека из приведенного ниже видео.

    Предыдущая

    АнатомияТест дыхательная система человека с ответами 4, 8 класс, вопросы по органам дыхания

    Следующая

    АнатомияСкелет человека с названием костей, виды костей, строение черепа человека фото с описанием, функции скелета, самая крупная, длинная кость, скелет стопы, кисти руки

    Мышечная система и основные группы мышц

    Мышечная система относится к одним из самых важных биологических подсистем, с помощью которых организм выполняет различные движения.

    Ее можно представить в виде совокупности мышечных волокон, способных к сокращению. Волокна соединяются между собой в пучки, которые формируют мышцы как особые органы, или же сами входят во внутренние органы. Масса мышц гораздо выше, чем других органов: у некоторых животных она составляет 50 процентов всей массы тела, а у человека — 40 процентов. Мышечная система превращает химическую энергию в теплоту и механическую энергию.

    Мышечная мускулатура

    У позвоночных мышечная мускулатура разделяется на такие группы:

    • Соматическая, заключающая в себе внутренности и образующая мышцы конечностей. К ней относятся скелетные мышцы.
    • Висцеральная (входит в состав внутренностей). Это гладкая и сердечная мускулатура.

    Мышечная система человека

    Скелетные мышцы бывают произвольными и поперечнополосатыми. Они прикрепляются к костям и представляют собой цилиндрические волокна длиной 1-10 см.

    Каждое мышечное волокно – это недифференцированная цитоплазма (саркоплазма) с большим количеством ядер, расположенных по периферии. Периферия включает в себя дифференцированные поперечно-полосатые миофибриллы. Окружает периферию прозрачная оболочка (сарколемма), в которую входят коллагеновые фибриллы. Малая группа волокон окружена эндомизием; крупные мышечные соединения представляют собой пучки волокон, заключенных во внутренний перемизий; каждая мышца окружена наружным перемизием. Мышечные и соединительные ткани друг друга продолжают и связаны между собой. Вся мышца заключена в футляр, называемый фасцией. Мышечная система состоит из мышц, каждая из которых соединена с нервами и сосудами и пронизана ими.

    Мышцы помогают сохранять равновесие тела, осуществлять перемещение в пространстве и жизненно важные движения всех частей тела.

    Гладкие мышцы располагаются в стенках сосудов и внутренних органов. Длина мышц этого вида составляет 0.02-0.2 мм. Они лишены исчерченности, форма их напоминает веретено. Клетки гладких мышц имеют в центре овальное ядро.

    Гладкие мышцы способствуют транспортировке того, что содержится в полых органах (пищи в кишечнике, например). Они участвуют в регуляции давления, расширении и сужении зрачка, других движениях в организме. За сокращение гладких мышц отвечает вегетативная нервная система.

    Мышечная система включает также сердечную мышцу, которая есть только в сердечных стенках. Она непрерывно сокращается всю жизнь, обеспечивая кровообращение по сосудам и питая необходимыми веществами ткани и органы.

    Костно-мышечная система

    В теле человека содержится около 400 мышц поперечнополосатых, которые сокращаются под управлением ЦНС.

    Костно-мышечная система включает мышцы, кости, сухожилия, суставы, связки и хрящи, составляющие почти 75% веса человека. Эта система придает человеческому телу определенную форму, позволяет ему стоять и передвигаться. Остовом для органов и тканей служит костный скелет, он также надежно защищает важные органы от повреждений. В костях накапливаются такие минеральные вещества, как фосфор и кальций. Внутренность костей представлена костным мозгом, участвующим в образовании всех клеток крови (эритроцитов, лейкоцитов и кровяных пластинок).

    При повреждениях и заболеваниях любой из частей опорно-двигательного аппарата нарушается статика и динамика всего организма. Кроме того, что страдает весь опорно-двигательный аппарат, внутренние органы тоже перестают правильно функционировать. Например, при укорочении одной из конечностей искривляется позвоночник, что вызывает деформацию грудной клетки, как следствие — страдают органы кровообращения и дыхания.

    Мышечная система человека

    Движение неотъемлемая часть человеческой жизни. Движение человека невозможно без мышц. Без них человек не мог бы быть тем, кем он является. Мышцы помогают поддерживать наше тело в горизонтальном состоянии, выполнять различные виды деятельности от самых простых движений пальцами до акробатических номеров. Мышцы по своей структуре, типу и функциям очень отличаются.

    Мышечная система человека – это система органов, которую образуют скелетные мышцы, приводящие в движение костную систему, несущую ответственность за движения человека.

    Замечание 1

    Мышцы представляют собой мышечную ткань, которая пронизана сосудами и нервными окончаниями. Большинство мышц человеческого тела парные. У разных людей мышечная система развита в разной степени. У профессиональных спортсменов она развита в наибольшей степени.

    Типы мышечной ткани

    Существует три типа мышечной ткани:

    • поперечнополосатые мышцы скелета;
    • поперечнополосатые мышцы сердца;
    • гладкие мышцы внутренних органов, сосудов и кожи.

    Поперечнополосатые мышцы скелета — это упругая ткань, которая сокращается под влиянием нервных импульсов. Эта мышечная ткань нужна человеку для дыхания, движения, управления голосовыми связками. Скелетная мышечная ткань состоит из миоцитов.

    Поперечнополосатые мышцы сердца отличаются от поперечнополосатых мышц скелета по строению и по функции. Сердечные мышцы сокращаются не по воле человека, за их сокращение отвечает вегетативная нервная система. Сердечная мышечная ткань состоит из кардиомиоцитов. Кардиомиоциты – это мышечные клетки сердца. Кардиомиоциты соединены между собой вставочными дисками.

    Гладкие мышцы внутренних органов состоят в основном из веретенообразных мышечных волокон. Клетки в этом типе мышечной ткани соединены между собой нексусами. Особенность этих мышц заключается в том, что они могут воспроизводить спонтанную автоматическую деятельность. Этот вид мышечной ткани обладает большой пластичностью, что положительно сказывается на работе внутренних органов в состав которых она входит.

    Готовые работы на аналогичную тему

    Строение мышцы

    Мышца состоит из рыхлой и плотной ткани, сосудов, нервов. Основа мышцы – это пучки поперечнополосатых волокон. Вокруг мышцы находится эпимизий, который затем переходит в сухожилие.

    Одни волокна прикрепляется к костям, а другие имеют опору на соединительно-тканных образованиях мышц.

    Внутри мышцы проходят капилляры и нервные волокна благодаря им осуществляются кровоснабжение и двигательные импульсы.

    Классификация мышц

    Существует множество классификаций скелетных мышц. Классификации основаны на различных признаках, например, по форме, по направлению мышечных волокон, по расположению в теле человека, по функции, по соотношению к суставам.

    По форме мышцы бывают квадратные, треугольные или круговые. По длине они делятся на короткие, длинные и широкие. По строению мышцы бывают веретенообразные. Чаще эти мышцы расположены на конечностях. Они прикрепляются к костям и отвечают за движение.

    По ходу мышечных волокон очень различается много типов мышц. Среди них отмечают мышцы с прямым ходом и мышцы с поперечным ходом. Они в свою очередь делятся на одноперистые, двуперистые и многоперистые.

    Мышцы также классифицируются по той функции, которую они выполняют. Мышцы могут выступать как сгибатели и разгибатели, могут выполнять отводящую и приводящую функцию. Так же в зависимости от исполняемой функции мышцы делятся на супенаторы, пронаторы, сжиматели, напрягающие, поднимающие и опускающие.

    Мышцы делятся на группы так же по месту прикрепления. Мышцы могут прикрепляться к костям и к суставам.

    По отношению к суставам, мышцы разделяют на односуставные, двусуставные и многосуставные. Многосуставные мышцы покрывают одно-суставные.

    По положению мышцы могут подразделяться на поверхностные и глубокие. Мышцы могут быть наружными и внутренними, а также литеральными и медиальными.

    Функции мышечной системы

    Мышечная система имеет несколько основных функции:

    • движение
    • удерживание тела
    • производство тепла
    • формирующая
    • защитная

    Сердечная мышечная ткань отвечает за сердцебиение, то есть помогает крови передвигаться по нашему организму. Висцерная мышечная ткань, которая представлена во внутренних органах помогает передвигать пищу и продукты жизнедеятельности по пищеварительному тракту. Иначе эта деятельность называется перистальтика. Скелетная мышечная ткань отвечает за движение человека. Мышечная ткань приводит в движение суставы.

    Эти мышцы осуществляют изотонической движение и изометрическое.

    Скелетные мышцы помогают поддерживать наше тело в вертикальном положении. За это свойство отвечает мышечный тонус. Если мышечный тонус отсутствует, то человек теряет устойчивость.

    Еще одна важная функция мышц — это поддержание тепла в организме. Мышцы, находясь в активном состоянии, продуцируют тепло, которое с помощью крови переносится в другие части организма и помогает поддерживать терморегуляцию. Излишнее тепло, например, во время физической активности выводится через потоотделение. Мышцы непосредственно реагируют на повышение и понижение температуры. Если температура внешней среды высокая, то мышцы расслабляются, если низкая, то напрягаются.

    Мышцы также имеют функцию формирования тела и фигуры. Мышцы определяют внешнюю форму тела. Человек может самостоятельно регулировать свой мышечный объем.

    Защитная функция мышц очень важна. Органы брюшной полости защищены мышцами пресса. Кости и суставы тоже в свою очередь находятся под защитой мышц.

    Они защищают кости и суставы от ушибов, повреждений, переломов. Не все кости и суставы охраняют мышцы, например, коленные суставы не покрыты мышцами поэту чаще других страдают от повреждений.

    Замечание 2

    Мышечная ткань восстанавливается достаточно быстро, примерно 2 недели требуется для полной регенерации мышечной ткани, кости и суставы, которые они защищают восстанавливаются значительно медленнее.

    Обзор мышечной системы

    Взаимодействие скелетных мышц

    Скелетные мышцы взаимодействуют, чтобы производить движения посредством анатомического позиционирования и скоординированного суммирования сигналов иннервации.

    Цели обучения

    Объясните суммарное взаимодействие скелетных мышц и то, как они влияют на движение

    Основные выводы

    Ключевые моменты
    • Сокращения мышц можно назвать подергиванием, суммированием или столбняком.
    • Сокращение — это период
      сокращения и расслабления мышцы после однократной стимуляции.
    • Суммирование — это
      возникновения дополнительных сокращений перед тем, как предыдущие сокращения полностью расслабились.
    • Суммирование может быть достигнуто путем увеличения частоты стимуляции или привлечения дополнительных мышечных волокон в мышцу.
    • Столбняк
      возникает, когда частота мышечных сокращений такова, что максимальная сила создается напряжением без какого-либо расслабления мышцы.
    Ключевые термины
    • столбняк : Когда частота мышечных сокращений такова, что максимальная сила создается напряжением без какого-либо расслабления мышцы.
    • суммирование
      : Возникновение дополнительных сокращений перед тем, как предыдущее подергивание полностью расслабилось.
    • подергивание : период сокращения и расслабления мышцы после однократной стимуляции.

    Сокращения скелетных мышц можно сгруппировать по длине и частоте сокращений.

    Twitch

    При стимуляции одним потенциалом действия мышца сокращается, а затем расслабляется. Время между стимулом и началом сокращения называется латентным периодом, за которым следует период сокращения. При пиковом сокращении мышца расслабляется и возвращается в исходное положение. Взятые вместе, эти три периода называются подергиванием.

    Сокращение мышц : Время между стимуляцией и сокращением называется латентным периодом.После сокращения мышца снова расслабляется до уровня напряжения покоя. Вместе эти три периода образуют одно мышечное сокращение,

    .

    Суммирование

    Если бы дополнительный потенциал действия должен был стимулировать сокращение мышцы до того, как предыдущее мышечное сокращение полностью расслабилось, то он суммировался бы с этим предыдущим сокращением, увеличивая общее количество напряжения, производимого в мышце. Это сложение называется суммированием. Суммирование мышц может происходить между моторными единицами, чтобы задействовать больше мышечных волокон, а также внутри моторных единиц за счет увеличения частоты сокращения.

    Суммирование нескольких волокон

    Когда центральная нервная система посылает слабый сигнал о сокращении мышцы, сначала стимулируются меньшие двигательные единицы, будучи более возбудимыми, чем более крупные. По мере увеличения силы сигнала возбуждаются все больше (и более крупные) двигательные единицы. У самых крупных моторных единиц сократительная сила в 50 раз выше, чем у меньших; таким образом, по мере того, как активируется все больше и больше двигательных единиц, сила сокращения мышц становится все сильнее.Концепция, известная как принцип размера, позволяет градации силы мышц во время слабого сокращения происходить небольшими шагами, которые постепенно увеличиваются по мере того, как требуется большее количество силы.

    Суммирование частот

    Для скелетных мышц сила, оказываемая мышцами, может контролироваться путем изменения частоты, с которой потенциалы действия посылаются к мышечным волокнам. Потенциалы действия не поступают в мышцы синхронно, и во время сокращения только определенный процент волокон в мышце будет сокращаться в любой момент времени. В типичных обстоятельствах, когда человек прилагает столько мышечной силы, сколько он сознательно способен, примерно одна треть волокон в этой мышце будет сокращаться одновременно. Этот относительно низкий уровень сокращения является защитным механизмом для предотвращения повреждения мышечной ткани и прикрепления сухожилий и структур.

    Столбняк

    Если частота генерируемых потенциалов действия увеличивается до такой степени, что напряжение мышц достигает своего пика и выходит на плато и не наблюдается расслабления, то сокращение мышц описывается как столбняк.

    Суммирование и сокращения столбняка : Повторяющиеся сокращения, когда предыдущие сокращения не расслабились полностью, называются суммированием. Если частота этих сокращений увеличивается до точки, при которой создается максимальное напряжение и не наблюдается расслабления, то сокращение называется столбняком.

    Как называются скелетные мышцы

    Анатомическое расположение пучков скелетных мышц можно описать как параллельное, сходящееся, перистое или сфинктерное.

    Цели обучения

    Различать параллельные, перистые, конвергентные и сфинктерные типы мышц

    Основные выводы

    Ключевые моменты
    • Параллельные мышцы являются наиболее многочисленными и типичными, пучки которых расположены параллельно друг другу.
    • Сходящиеся мышцы похожи на параллельные мышцы в прикреплении, хотя пучки не идут параллельно друг другу, образуя более широкую мышцу.
    • В перистой мышце сухожилие проходит по всей длине мышцы, при этом пучки прикрепляются под углом.
    • Мышцы сфинктера характеризуются круговым расположением пучков вокруг отверстия. При сокращении отверстие становится меньше.
    Ключевые термины
    • Параллельно : мышца с общей точкой прикрепления, пучки которой проходят параллельно друг другу.
    • Круговой : Кольцевая полоса мышц, которая окружает отверстие тела, сужается и расслабляется для управления потоком.
    • Pennate
      : мышца в форме пера с пучками, которые косо (под углом) прикрепляются к центральному сухожилию.
    • Конвергентный : мышца с общей точкой прикрепления, хотя отдельные пучки не обязательно проходят параллельно друг другу.

    Скелетные мышцы можно разделить на четыре группы в зависимости от их анатомического расположения.

    Параллельный

    Параллельные мышцы характеризуются пучками, которые проходят параллельно друг другу, и сокращение этих групп мышц действует как продолжение сокращения одного мышечного волокна. Большинство скелетных мышц тела — это параллельные мышцы; хотя их можно увидеть в различных формах, таких как плоские полосы, в форме веретена, а некоторые могут иметь большие выступы в середине, известные как брюшко мышцы.

    Параллельные мышцы в зависимости от их формы можно разделить на веретенообразные и негибридные типы. Веретенообразные мышцы имеют более веретенообразную форму (их диаметр в центре больше, чем на обоих концах), тогда как неправильные мышцы имеют более прямоугольную форму с постоянным диаметром.

    Двуглавая мышца плеча является примером веретенообразной параллельной мышцы и отвечает за сгибание предплечья.

    Конвергентный

    Конвергентные мышцы имеют общую точку прикрепления, от которой мышечные пучки отходят наружу, не обязательно в определенной пространственной структуре, позволяя мышце покрывать широкую поверхность.Эти мышцы не оказывают такого большого усилия на свои сухожилия. Мышечные волокна во время сокращения часто могут оказывать противоположное воздействие, например, не тянуть в одном направлении, в зависимости от расположения мышечного волокна. Эти волокна, покрывающие широкую поверхность, позволяют совершать более разнообразные движения. Поскольку пучки натягивают сухожилия под углом, они не перемещают сухожилие до их параллельных мышечных аналогов. Несмотря на это, они создают большее напряжение, потому что обладают большим количеством мышечных волокон, чем параллельные мышцы аналогичного размера.

    Большая грудная мышца, обнаруженная в груди, является примером сходящейся мышцы и отвечает за сгибание плеча.

    Pennate

    В Pennate мышцах сухожилие проходит по всей длине мышцы. Фасцикулы натягивают сухожилие под углом, таким образом, не перемещаясь так далеко от параллельных мышц во время сокращения. Однако в этих мышцах обычно относительно больше мышечных волокон, чем в параллельных мышцах аналогичного размера, и поэтому они несут большее напряжение.

    Если все пучки перистой мышцы находятся на одной стороне сухожилия, перистая мышца называется монопородной.Если пучки лежат по обе стороны от сухожилия, мышца называется двуплодной. Если центральное сухожилие разветвляется внутри перистой мышцы, эта мышца называется многоплодной.

    Прямая мышца бедра, находящаяся в бедре и отвечающая за его сгибание, является примером двуплодной мышцы.

    Циркуляр

    Волокна круговых мышц или мышц сфинктера расположены концентрически вокруг отверстия или углубления. По мере того как мышца сокращается, отверстие, которое она обходит, становится меньше.По этой причине эти мышцы часто встречаются на входах и выходах внешних и внутренних проходов. Скелетные круговые мышцы отличаются от эквивалентов гладких мышц своей структурой и тем, что они находятся под произвольным контролем

    Orbicularis oris, контролирующая открывание рта, является примером круговой мышцы.

    Типы мышц тела : четыре типа мышц; параллельные (веретенообразные и не веретенообразные), круглые, сходящиеся и перистые (однотонные, би и мульти).

    Как скелетные мышцы производят движения

    Мышцы организованы в группы по агонистам, антагонистам и синергистам, которые производят и модулируют движения.

    Цели обучения

    Различение мышц-агонистов и мышц-антагонистов

    Основные выводы

    Ключевые моменты
    • Мышцы агониста укорачиваются при сокращении, чтобы произвести движение.
    • После сокращения мышца-антагонист, соединенная с мышцей-агонистом, возвращает конечность в предыдущее положение.
    • Мышцы-синергисты действуют вокруг подвижного сустава, производя движение, аналогичное или согласованное с мышцами-агонистами, что обеспечивает широкий диапазон возможных движений.
    Ключевые термины
    • антагонист : Этот тип мышцы действует как мышца, противодействующая агонистам, обычно сокращаясь, чтобы вернуть конечность в исходное положение покоя.
    • агонист : Эти мышцы обычно связаны с самим движением и иногда называются первичными двигателями.Они сокращаются, в то время как другая мышца расслабляется.
    • синергист : Этот тип мышц действует вокруг подвижного сустава, производя движение, подобное или согласованное с мышцами-агонистами.

    Мышцы существуют в группах, которые производят движения за счет сокращения мышц. Мышцы классифицируются в зависимости от их действий во время сокращений как агонисты, антагонисты или синергисты.

    Для пар мышц, называемых антагонистическими парами, одна мышца обозначается как мышца-разгибатель, которая сокращается, чтобы открыть сустав, и мышца-сгибатель, которая действует напротив мышцы-разгибателя.Эти пары существуют в местах тела, в которых тело не может вернуть конечность в исходное положение из-за простого отсутствия сокращения. Типичные пары мышц включают двуглавую мышцу плеча и трехглавую мышцу плеча, которые сгибают или разгибают предплечье.

    Мышцы-агонисты

    Мышцы-агонисты — это мышцы, которые мы обычно ассоциируем с самим движением, и поэтому их иногда называют первичными двигателями. Мышцы-агонисты производят основное движение или серию движений за счет собственных сокращений.Чтобы вызвать движение, мышцы-агонисты должны быть физически расположены так, чтобы они пересекали сустав через сухожилие. Сокращение будет двигать конечностями, связанными с этим суставом. В этом смысле кость действует как рычаг при сокращении прикрепленного мышечного волокна, приводя в движение движение.

    Во время сгибания предплечья двуглавая мышца плеча является мышцей-агонистом, подтягивая предплечье к плечу.

    Мышцы-антагонисты

    Большинство мышц сгруппированы в пары, с антагонистом каждой мышцы-агониста.Исключение составляют такие мышцы, как мышцы сфинктера, которые сокращаются способом, противоположным состоянию покоя. Мышцы-антагонисты действуют как мышцы, противостоящие агонистам, обычно сокращаясь, чтобы вернуть конечность в исходное положение покоя.

    Во время сгибания предплечья трехглавая мышца плеча является мышцей-антагонистом, сопротивляющейся движению предплечья вверх по направлению к плечу.

    Мышцы синергиста

    Мышцы-синергисты действуют вокруг подвижного сустава, производя движение, аналогичное или согласованное с мышцами-агонистами.Они часто действуют, чтобы уменьшить чрезмерную силу, создаваемую мышцей-агонистом, и называются нейтрализаторами. Синергисты полезны, потому что они фиксируют определенные суставы, чтобы разрешить диапазон сокращений, в отличие от явной силы сокращения агонистов, ограничивающей диапазон возможных движений.

    Во время сгибания предплечья плечевые и плечевые мышцы действуют как мышцы-синергисты, помогая двуглавой мышце плеча подтягивать предплечье к плечу. Мышцы вращательной манжеты также являются синергистами в том смысле, что они фиксируют плечевой сустав, позволяя двуглавой мышце плеча прикладывать большую силу.

    Сгибание предплечья двуглавой мышцей плеча : Двуглавая мышца плеча является агонистом или движителем праймера, отвечающим за сгибание предплечья. Трехглавая мышца плеча (не показана) действует как антагонист. Brachioradialis и brachialis являются мышцами-синергистами, а вращающая манжета (не показана) фиксирует плечевой сустав, позволяя двуглавой мышце плеча прикладывать большую силу.

    Места прикрепления мышц

    Сухожилия состоят из соединительной ткани, которая прикрепляет мышцы к кости.

    Цели обучения

    Опишите функцию сухожилий

    Основные выводы

    Ключевые моменты
    • Сухожилия обладают эластичностью, что позволяет им выдерживать растяжение и действовать как пружины.
    • Сухожилия в основном состоят из плотно упакованных коллагеновых волокон, идущих параллельно силе, создаваемой мышцами, к которым они прикреплены.
    • Сухожилия также содержат волокна эластина для улучшения эластичных свойств и протеогликаны, которые поддерживают организацию сухожилий при растяжении и сжатии.
    • Апоневрозы — это большие плоские листы соединительной ткани, похожие на сухожилия. Они отвечают за связывание мускулов с костью и фасциями других мускулов.
    Ключевые термины
    • сухожилие : плотная полоса фиброзной ткани, которая обычно соединяет мышцу с костью.
    • апоневрозы : плотный плоский лист фиброзной ткани, который соединяет мышцы с костями или фасциями других мышц.

    Большая часть скелетных мышц прикрепляется к кости для движения.Однако некоторые скелетные мышцы прикрепляются непосредственно к другим мышцам, фасциям или тканям, например к коже.

    Сухожилия

    Ахиллово сухожилие : Ахиллово сухожилие обеспечивает стабильность и ограничивает диапазон движений в голеностопном суставе. Это самое толстое и сильное сухожилие в теле. Сухожилия — это обычная ткань, соединяющая мышцы с костью.

    Сухожилие представляет собой шнуровидную волокнистую соединительную ткань, которая соединяет мышцы с костью и способна выдерживать натяжение. На любом конце сухожилия его волокна переплетаются с фасцией мышцы или надкостницей (плотное волокнистое покрытие кости), позволяя рассеивать силу по кости или мышце.

    Сухожилия в основном состоят из плотно упакованных коллагеновых волокон, идущих параллельно силе, создаваемой мышцами, к которым они прикреплены. С коллагеновыми волокнами переплетены молекулы эластина, улучшающие эластичность сухожилий, и различные протеогликаны, белки, к которым присоединены многие молекулы углеводов.Эти белки играют ключевую роль в поддержании организации сухожилия, особенно во время сжатия и разгибания.

    Когда-то считалось, что сухожилия играют только пассивную связующую роль. Однако исследования их упругих свойств показали, что они также могут действовать как пружины. Эластичность сухожилий позволяет им пассивно накапливать энергию для последующего высвобождения. Наиболее широко исследуемым примером является ахиллово сухожилие, которое накапливает и высвобождает упругую энергию во время ходьбы, повышая эффективность и снижая мышечную нагрузку.

    Апоневрозы

    Не все мышцы прикрепляются сухожилиями. Апоневрозы — это большие пластинчатые слои соединительной ткани, состав которых аналогичен составу сухожилий. Апоневрозы также могут прикрепляться к костям, например апоневрозам волосистой части головы, и к фасциям других мышц или тканей, например к передним апоневрозам живота. Их большая форма и форма обеспечивают структуру и распределяют напряжение по более широкой площади или большому количеству групп мышц.

    Другое навесное оборудование

    Мышцы также могут прикрепляться непосредственно к другим тканям, что особенно заметно на лице.Скелетные мышцы, участвующие в контроле экспрессии, прикрепляются непосредственно к фасции кожи.

    Расположение пучков

    Скелетные мышцы сгруппированы в пучки, которые представляют собой пучки мышечных волокон, окруженных перимизием.

    Цели обучения

    Очертание строения мышечного пучка

    Основные выводы

    Ключевые моменты
    • Скелетная мышца окружена толстым соединительным листом, называемым фасцией
    • Под ним находится еще один слой соединительной ткани, называемый эпимизием, который простирается внутрь в виде перимизиума в мышцу, разделяя волокна на пучки, называемые пучками.
    • Каждый пучок окружен другим слоем соединительной ткани, называемым эндомизием.
    • Эта структура разделяет и защищает мышцы, а также распределяет силу по всей мышце, предотвращая повреждение.
    Ключевые термины
    • перимизий : продолжение эпимизия в мышцу, разделяющее волокна на пучки.
    • эпимизий : лист соединительной ткани, лежащий ниже фасции, также окружающий мышцу.
    • фасция : лист толстой соединительной ткани, окружающий мышцу.
    • эндомизий : лист соединительной ткани, который обертывает каждый пучок.
    • пучок : Группа мышечных волокон, окруженных перимизием.

    Мышечная фасция

    Структура мышцы : Скелетная мышца окружена толстым внешним слоем соединительной ткани, называемым фасцией. Внутри него находится слой, называемый эпимизием, который расщепляется внутрь на мышцу как перимизий, разделяющий мышечные волокна на группы, называемые пучками. Каждый пучок окружен другим слоем соединительной ткани, называемым эндомизием.

    Ткань скелетных мышц состоит из многочисленных мышечных волокон, которые отделены от прилегающих мышц и других тканей слоем плотной эластичной соединительной ткани, называемой фасцией. Эта фасция может выступать за конец мышцы и прикрепляться к костям, другим мышцам и другим тканям. Ключевые группы мышц и связанные с ними сосудистая и нервная системы также могут быть отделены от других тканей, например, в плече.Эти группы называются фасциальными отделениями.

    Эта фасция взаимосвязана с серьезными фасциями, встречающимися по всему телу, включая поверхностную фасцию, которая является самым нижним слоем кожи, и висцеральную фасцию, окружающую внутренние органы. Фасция, окружающая мышцу или группу мышц, не содержит многих кровеносных сосудов, но богата сенсорными рецепторами.

    Мышечная фасция преимущественно состоит из поперечно сшитых волокон коллагена и эластина, ориентированных параллельно направлению мышечной силы, что делает их способными противостоять силам высокого напряжения, оставаясь при этом в некоторой степени эластичными.

    Fascicles

    Под фасцией скелетных мышц находится еще один слой соединительной ткани, называемый эпимизием, который тесно связан с фасцией. Он простирается внутрь и становится перимизием, затем в мышцу, разделяя мышечные волокна на небольшие пучки, называемые пучками. Фасцикулы могут быть расположены в различных анатомических положениях внутри мышцы, производя различные движения.

    Каждое отдельное волокно в пучке окружено тонким соединительным слоем, называемым эндомизием, который помогает поддерживать тесную связь между мышечным волокном и соответствующими сосудистыми и нервными системами.

    Организация соединительной ткани по всей мышце и вокруг нее обеспечивает силу и гибкость при равномерном распределении силы. Он также поддерживает тесную связь сосудистой и нервной системы с мышцами, которая необходима для доставки необходимых метаболитов и нервных импульсов.

    Сердечная ткань и гладкая мышечная ткань

    Хотя сердечные и гладкие мышцы также обернуты соединительной тканью, они не дифференцируются так же, как скелетные мышцы.

    Рычажные системы

    Расположение мышц позволяет им двигаться относительно друг друга, в то время как соединительный сустав действует как точка поворота для рычажной системы.

    Цели обучения

    Различать сгибатели и разгибатели, а также приводящие и отводящие мышцы

    Основные выводы

    Ключевые моменты
    • Простая система рычагов может использоваться для описания действия скелетных мышц. Рычаги состоят из оси, неподвижного стержня и груза, к которому приложена сила.
    • Относительные положения оси поворота, нагрузки и силы определяют тип рычага и последующее действие.
    • Сгибатели и разгибатели регулируют угол между двумя частями тела. Сгибание уменьшает угол, а разгибание увеличивает угол.
    • Отведение и приведение — это движения относительно средней линии тела. Отведение — это движение от этой средней линии, а приведение — это движение к средней линии.
    • Внутреннее вращение перемещает дистальные части конечностей внутрь к средней линии. Наружное вращение — это противоположное движение, направленное на дистальную часть конечностей от средней линии.
    • Возвышение конечности или части тела перемещает ее в верхнем направлении, в то время как депрессия перемещает части тела в нижнем направлении.
    Ключевые термины
    • отведение : Движение от средней линии тела.
    • вращение : Акт поворота вокруг центра или оси.
    • Первоклассный рычаг : Усилие и нагрузка по обе стороны от оси.
    • Рычаг второго класса : Нагрузка между усилием и стержнем.
    • Рычаг третьего класса : Усилие между шарниром и грузом.
    • происхождение : относительно неподвижная точка прикрепления мышцы.
    • насадка : подвижная точка прикрепления мышцы.
    • сгибание : Уменьшает угол между двумя частями тела.
    • удлинитель : Увеличивает угол между двумя частями тела.
    • приведение : Движение к средней линии тела.

    Скелетная мышца обычно прикрепляется к относительно неподвижной части тела на одном конце и к более подвижной области на другом конце сустава. Крепление на неподвижном конце называется исходной точкой, а на подвижном конце — вставкой. При сокращении вставка тянется к исходной точке. Это движение можно описать с помощью простой рычажной системы. Мышцы могут иметь несколько источников и прикреплений, которые модулируют тип движения, которое они производят.

    Рычаги

    Рычаг состоит из трех частей: неподвижного стержня, который прикреплен к точке опоры (оси), и груза.В зависимости от относительного положения трех компонентов рычаги могут перемещать тяжелые грузы или перемещать грузы дальше или быстрее при приложении силы.

    Если груз находится близко к оси поворота, а сила приложена далеко от оси, то считается, что рычаг работает с механическим преимуществом. Большая, но относительно небольшая сила может переместить тяжелый объект. Классический пример такого рычага — автомобильный домкрат. При больших перемещениях рычага тяжелый автомобиль небольшими приращениями поднимается от земли.

    Если нагрузка находится далеко от оси поворота и сила приложена близко к оси поворота, то считается, что рычаг работает с механическими недостатками.Для перемещения относительно небольшого груза требуется большая сила, но скорость и расстояние, на котором этот груз может перемещаться, значительно увеличиваются. Примером этого является сочетание лопаты с сильными движениями мышц руки, что приводит к большим движениям головки лопаты.

    В мышцах суставы являются стержнями, а кости — неподвижными стержнями. Нагрузка — это вес кости, связанных тканей и других перемещаемых объектов, а сила прилагается мышцей в точке ее прикрепления.

    Классы рычагов

    Рычаги

    также могут изменяться в зависимости от относительного положения нагрузки, оси поворота и точки приложения силы. Классы рычагов включают:

    Первоклассный рычаг

    В рычаге первого класса нагрузка и усилие располагаются по обе стороны от оси, как качели. Первоклассные рычаги относительно редко встречаются в организме, но одним из примеров является трехглавая мышца плеча плеча, которая действует для разгибания предплечья. Сила прилагается в точке ее приложения к локтевой кости предплечья, локоть является стержнем, а нагрузка — плечевой костью в плече.Думая об относительном расстоянии между точками прикрепления, можно сказать, что трехглавая мышца плеча имеет механический недостаток.

    Рычаг второго класса

    В рычаге второго класса сила прилагается к одному концу, шарнир — к другому, а нагрузка находится между ними. Рычаги второго класса тоже относительно редки в кузове. Один из примеров — приподняться на цыпочках. Ось опирается на переднюю часть стопы, нагрузка — это вес тела, а сила прилагается через ахиллово сухожилие в пятке.Все рычаги второго класса в кузове действуют механически, поскольку сила всегда прикладывается ближе к нагрузке, чем к оси.

    Рычаг третьего класса

    В рычаге третьего класса сила приложена между грузом и осью. Большинство мышц тела — это рычаги третьего класса, и все они действуют с механическими недостатками, поскольку сила прилагается ближе к оси вращения, чем нагрузка. Примером рычага третьего класса в теле является двуглавая мышца плеча, которая сгибает предплечье по направлению к плечу.Начинающаяся от лопатки, точка опоры — это локоть, при этом сила, прикладываемая сразу после локтя в точке прикрепления к радиусу предплечья. Нагрузка — это предплечье и любые предметы, которые несет человек.

    Типы движения

    Работая вместе, используя принципы рычага, описанные выше, скелетные мышцы могут вызывать широкий диапазон движений.

    Сгибатели и разгибатели

    Сгибатели и разгибатели регулируют и изменяют угол между двумя частями тела.Сгибание уменьшает угол, а разгибание увеличивает угол. Например, разгибание руки открывает угол в локтевом суставе, а сгибание позволяет сгибать руку. Сгибание также может двигаться внутрь к телу или вперед, например, бедрами или плечами. Разгибание в этом случае перемещает конечности к задней стороне рычага тела.

    Похищение и приведение

    Отведение и приведение — это движения относительно средней линии тела. Отведение — это движение от средней линии тела, а приведение — это движение к этой линии.Например, отведение рук или ног в сторону от тела — это отведение, а возвращение конечностей к средней линии — приведение.

    Внутреннее вращение

    Внутренняя или медиальная ротация характерна для плеча или бедра и приводит дистальные части конечностей внутрь к средней линии. Внутреннее вращение также может перемещать плечевую и бедренную кость внутрь. Наружное или латеральное вращение — это противоположное движение, указывающее дистальную часть конечностей, а также плечевую и бедренную кость от средней линии.

    Депрессия и возвышение

    Конечность или часть тела могут перемещаться вверх (или в более высоком направлении) посредством возвышения. Например, трапеция поднимает верхушку плеча вверх. Депрессия противоположна возвышению или движению частей тела в нижнем направлении.

    Типы движений тела : Расположение мышц вокруг сустава определяет тип производимого движения.

    способов ухода за мышечной системой

    Знаете ли вы, что в вашем теле более 600 мышц? Эти мышцы помогают вам двигаться, поднимать предметы, перекачивать кровь по телу и даже помогают дышать.

    Когда вы думаете о своих мышцах, вы, вероятно, больше всего думаете о тех, которыми вы можете управлять. Это ваши произвольные (VOL-uhn-ter-ee) мышцы, что означает, что вы можете контролировать их движения. Их также называют скелетными (SKEL-i-tl) мышцами, потому что они прикрепляются к вашим костям и работают вместе с вашими костями, помогая вам ходить, бегать, играть на музыкальном инструменте или готовить еду. Мышцы рта и горла даже помогают говорить!

    Поддержание здоровья мышц поможет вам ходить, бегать, прыгать, поднимать предметы, заниматься спортом и делать все, что вам нравится.Физические упражнения, достаточный отдых и сбалансированное питание помогут сохранить ваши мышцы здоровыми на всю жизнь.

    Почему здоровые мышцы важны для вас

    Здоровые мышцы позволяют свободно двигаться и сохранять силу.

    Здоровые мышцы позволяют свободно двигаться и сохранять силу. Они помогут вам получить удовольствие от занятий спортом, танцев, выгула собаки, плавания и других увлекательных занятий. И они помогают вам делать другие (не очень веселые) вещи, которые вы должны делать, например, заправлять кровать, пылесосить ковер или стричь газон.

    Сильные мышцы также помогают поддерживать суставы в тонусе. Если, например, мышцы вокруг вашего колена ослабевают, у вас может быть больше шансов повредить это колено. Сильные мышцы также помогают удерживать равновесие, поэтому вероятность поскользнуться или упасть меньше.

    И помните — упражнения, которые делают ваши скелетные мышцы сильными, также помогут сохранить вашу сердечную мышцу сильной!

    Различные виды мышц выполняют разную работу

    Скелетные мышцы соединены с вашими костями жесткими тканевыми связками, называемыми сухожилиями (TEN-duhns).Когда мышца сокращается, она тянет за сухожилие, которое перемещает кость. Кости связаны с другими костями связками (LIG-uh-muhnts), которые похожи на сухожилия и помогают удерживать скелет вместе.

    Гладкие мышцы также называют непроизвольными мышцами, поскольку вы не можете их контролировать. Гладкие мышцы работают в вашей пищеварительной системе, чтобы продвигать пищу и выводить отходы из вашего тела. Они также помогают держать глаза сфокусированными, не думая об этом.

    Сердечная (KAR-dee-ak) мышца.Знаете ли вы, что ваше сердце — это еще и мышца? Это специализированный тип непроизвольной мышцы. Он качает кровь по вашему телу, изменяя свою скорость, чтобы соответствовать требованиям, которые вы к нему предъявляете. Он качает медленнее, когда вы сидите или лежите, и быстрее, когда вы бежите или занимаетесь спортом, и вашим скелетным мышцам требуется больше крови, чтобы помочь им выполнять свою работу.

    История мышц

    История мышц

    ИСТОРИЯ МЫШЦ

    «Сила передвижения — это то, что сокращает и расслабляет мышцы, посредством которых члены и суставы двигаются, растягиваются или сгибаются.Этот сила достигает конечностей посредством нервов, и существует столько же форм силы, как есть движения. У каждой мышцы свое особое предназначение. и он подчиняется постановлению сложного смысла ». — Авиценна, ранний 11 век

    Мышцы требуют, пожалуй, меньшего объяснения в отношение к другим частям тела: большинство крупных мышц легко видны под кожей, и их роль в движении тела была относительно легко понять.Возможно, именно поэтому осторожные исследования мускулов в древности и средневековье относительно отсутствовали. анатомия. Посмотрите на средневековое анатомическое изображение ниже. Как изображаемые мышцы по отношению к другим частям тела?

    Вы можете сравнить рисунок руки внизу на двенадцатого века с очень подробным изображением руки, имитирующей Везалий, изображенный выше, был выгравирован примерно пятьсот лет спустя. Контраст поразительно.Подумайте о словах, которые шотландский студент-медик Джон Мойр записан в 1620 году, вторя средневековой традиции знания происхождения слова как средство анатомирования тела: «Мышца так называется либо из-за сходства с моллюсков, или потому что он напоминает ободранную мышь. Мышцу также называют lacertus . потому что по цвету и форме напоминает ящерицу ».

    Конец пятнадцатого и шестнадцатого века были эпохой великого увлечения мускулатурой. Леонардо да Винчи, как и многие художники эпохи Возрождения, большую часть своей жизни посвятил рисунок обнаженных мужчин в движении. Его изображения предполагают неявное привлекательность исследования мускулов путем объединения наблюдений за живыми с вскрытия мертвых. Посмотрите на два рисунка ниже. Ты можешь расскажи, что Леонардо хотел от них понять о теле? Как он совмещает художественное и научное восприятие?

    Образы мускулистых обнаженных девушек Леонардо были в первую очередь для его личного кабинета или были подготовительными набросками для некоторых из его известных картин, таких как Тайная вечеря .Тем не менее, мы можем видеть интересное взаимодействие между альбомами художников и опубликованными анатомическими трактаты начала шестнадцатого века. Якопо Беренгарио да Знаменитый комментарий Карпи к анатомии Мондино (1521) содержал серия поразительных изображений, таких как здесь. К по сравнению, такие изображения кажутся сильно стилизованными и не конкретизирующими фактическую мускулатура. И все же оба показали способность анатома раскрыть то, что лежать прямо под кожей.

    С публикацией Андреаса Везалия На Ткани человеческого тела (1543) мускулистый человек стал вместе с скелет, эмблема новой анатомии. Везалий взял своих читателей через подробное визуальное представление мышц во второй книге. Он не только дифференцировал мышцы на некоторых подробных, но использованных иллюстрациях, таких как тот, что справа от вас, чтобы передать тонкие способы, которыми люди и животные анатомия могла смешиваться.Присмотритесь к мышце правой ноги, чуть выше колена с надписью «x». Это человек? Почему ты думаете, что Везалий включил его в эту иллюстрацию?

    В 1550-е годы испанский анатом Хуан Вальверде увлекся мышцами как символ того, что тело может раскрыть на новые высоты. Везалий сделал мышцы, кажется, отпадают от тела серией поразительно расположенных мышц. мужчины настроены на фоне эпохи Возрождения Падуи.Вальверде и его граверы разрушили различие между диссектором и расчлененным изображая вскрытие как членовредительство — насильственное расследование своего собственного тело. На его изображениях изображена древняя пословица Nosce te ipsum (знать ты сам), предполагая, насколько сильно мускулистый человек стал обозначать моральные аспекты анатомии человека.

    К началу семнадцатого века врачи меньше обращали внимание на культурное значение человека без кожи и стал уделять больше внимания собственно строению мышц. По сути, этот новый интерес к мышцам связан с широко распространенным увлечение природой движения не только в теле, но и в мире большой. Поскольку врачи и философы начали создавать более механистические теории тела, изучение мускулатуры стало исследованием механизмы тела. Рассмотрим, например, как Уильям Харви в его Лекциях по анатомии в целом (1653), построенных на подробных исследования анатомов раннего Возрождения, чтобы создать совершенно иной изображение тела: «[Мышечные] волокна [служат] для движения, сухожилия, нити. Прямой: [1] продольное раскрытие за счет сжатия [2] поперечное сжатие сокращением. Косые мышцы не могут задержать тоническими движениями, потому что [согласно] Фаллопию прямые открыты, а поперечные не сжимаются путем сжатия «.

    Такой аккаунт не совсем так далеко как описание Декартом мышц и сухожилий как «устройств и пружин» которые, кажется, приводят [нервы] в движение ». Именно Декарт в своем« Трактате » на Man (написано между 1629 и 1633 годами и опубликовано в 1664 году), при условии, что ингредиенты для совершенно механистического взгляда на тело, когда он писал: «Я полагаю, что тело — не что иное, как статуя или машина из земли, который Бог формирует с явным намерением сделать его как можно больше как мы.»В руках некоторых читателей было легко удалить Бога целиком по картинке, рассматривая тело, как если бы это была настоящая машина — грубая материя в движении.

    ВОПРОСЫ: КАКАЯ РОЛЬ МОЖЕТ ИГРАЛО ИСКУССТВО В ОБНОВЛЕНИЕ ИНТЕРЕСА МЫШЦ? КАК МЫШЦЫ ПРЕКРАТИТСЯ Чтобы обозначить сверхъестественную силу тела и стать его образом. МАШИНОПОДОБНЫЕ КАЧЕСТВА?

    Назад к истории Тело главная

    Дополнительная литература

    Структура, функции и контроль опорно-двигательного аппарата человека

    Образец цитирования: Murphy AC, Muldoon SF, Baker D, Lastowka A, Bennett B, Yang M, et al.(2018) Структура, функции и контроль опорно-двигательного аппарата человека. PLoS Biol 16 (1): e2002811. https://doi.org/10.1371/journal.pbio.2002811

    Академический редактор: Грэм Тейлор, Оксфордский университет, Соединенное Королевство Великобритании и Северной Ирландии

    Поступила: 21 апреля 2017 г .; Принята к печати: 15 декабря 2017 г .; Опубликован: 18 января 2018 г.

    Авторские права: © 2018 Murphy et al.Это статья в открытом доступе, распространяемая в соответствии с условиями лицензии Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии указания автора и источника.

    Доступность данных: Все соответствующие данные находятся в документе и его файлах с вспомогательной информацией. Два использованных скелетно-мышечных графика, а также распределение мышечных сообществ и данные, использованные для создания всех цифр, можно найти по адресу DOI: 10.5281 / zenodo.1069104.

    Финансирование: Национальный научный фонд (номер гранта PHY-1554488). Спонсор не имел никакого отношения к дизайну исследования, сбору и анализу данных, принятию решения о публикации или подготовке рукописи.

    Конкурирующие интересы: Авторы заявили об отсутствии конкурирующих интересов.

    Введение

    Взаимосвязанная природа человеческого тела долгое время была предметом научных исследований и суеверных верований. От древних юморов, связывающих сердце, печень, селезенку и мозг смелостью, спокойствием и надеждой [1], до современного понимания связи кишечника и мозга [2], люди склонны искать взаимосвязи между разрозненными частями тела. объяснять сложные явления.Тем не менее, напряжение остается между этой базовой концептуализацией человеческого тела и редукционизмом, неявным в современной науке [3]. Понимание всей системы часто относят к футуристическому миру, в то время как отдельные эксперименты уточняют наше понимание мельчайших составных частей.

    Опорно-двигательный аппарат человека не является исключением из этой дихотомии. В то время как медицинская практика сосредоточена на кистях, стопах или лодыжках, клиницисты знают, что травмы одной части опорно-двигательного аппарата обязательно влияют на работу других (даже отдаленно удаленных) частей [4].Травма лодыжки может изменить характер походки, что приведет к хронической боли в спине; травма плеча может изменить осанку и вызвать дискомфорт в шее. Понимание фундаментальных отношений между фокальной структурой и потенциальными удаленными взаимодействиями требует целостного подхода.

    Здесь мы подробно описываем такой подход. Наша концептуальная основа мотивирована недавними теоретическими достижениями в сетевой науке [5], которая представляет собой развивающуюся дисциплину, построенную на упорядоченном слиянии математики (в частности, теории графов [6]) и физики (в частности, статистической механики [7]), компьютеров. наука, статистика [8] и системная инженерия.Подход упрощает сложные системы, разграничивая их компоненты и отображая паттерн взаимодействия между этими компонентами [9]. Это представление кажется особенно подходящим для изучения опорно-двигательного аппарата человека, который состоит из костей и соединяющих их мышц. В этом исследовании мы использовали этот подход для оценки структуры, функции и контроля опорно-двигательного аппарата.

    Использование сетевой науки для понимания опорно-двигательного аппарата в последние годы расширилось [10].Однако этот каркас в основном использовался для исследования свойств локальных мышечных или костных сетей. Например, местная структура черепа была исследована, чтобы выяснить, как можно классифицировать кости [11]. Кроме того, были проведены исследования топологии костно-мышечной сети позвоночника для оценки напряжений и деформаций в костях [12]. Существует несколько исследований, посвященных всей опорно-двигательной системе, хотя в них не используются математические инструменты, которые мы использовали здесь [13,14].Настоящее исследование отличается от предыдущих работ оценкой всей опорно-двигательной системы в сочетании с математическими инструментами науки о сетях.

    В этом более широком контексте мы сосредоточились на проблеме реабилитации после травм скелетных мышц или коры головного мозга. Прямое повреждение мышцы или связанного с ней сухожилия или связки влияет на другие мышцы через компенсаторные механизмы тела [15]. Точно так же потеря использования определенной мышцы или группы мышц из-за прямого повреждения коры головного мозга может привести к компенсаторному использованию альтернативных мышц [16,17].То, как структурированы взаимосвязи опорно-двигательного аппарата и как они функционируют, напрямую ограничивает то, как повреждение определенной мышцы повлияет на опорно-двигательный аппарат в целом. Понимание этих взаимосвязей может дать столь необходимое понимание того, какие мышцы больше всего подвержены риску вторичной травмы из-за компенсаторных изменений, возникающих в результате очаговой травмы, тем самым давая основу для более комплексных подходов к реабилитации. Кроме того, понимание того, как кора головного мозга отображается не только на отдельные мышцы, но и на группы топологически близких мышц, может помочь в будущих эмпирических исследованиях взаимосвязи между очаговыми повреждениями (включая инсульт) моторной коры и риском вторичного повреждения.

    Материалы и методы

    Строительство сети

    Используя таблицы Hosford Muscle [18], мы построили гиперграф опорно-двигательного аппарата, представив 173 кости (некоторые из них на самом деле являются связками и сухожилиями) в виде узлов и 270 мышц в виде гиперребер, соединяющих эти узлы (происхождение мышц и точки прикрепления перечислены в таблице S9. ). Этот гиперграф также можно интерпретировать как двудольную сеть, в которой мышцы являются одной группой, а кости — второй группой (рис. 1а). Матрица заболеваемости C 173 × 270 скелетно-мышечной сети, таким образом, определяется как C ij = 1, если v i ∈ e j и 0 в противном случае, где V = {v 1 , · · ·, v 173 } — это набор узлов (костей), а E = {e 1 , · · ·, e 270 } — набор гиперребер (мышц).Это гиперграфическое представление тела устраняет большую часть сложности опорно-двигательного аппарата, кодируя только то, какие мышцы прикрепляются к каким костям. Весь анализ применялся только к одной половине (левой или правой) тела, потому что каждое полушарие головного мозга контролирует только противоположную сторону тела. Поэтому мы еще больше упростили нашу модель, допустив лево-правую симметрию; на любых фигурах, на которых изображены обе половины тела, вторая половина присутствует исключительно для визуальной интуиции.

    Рис. 1. Схема представления данных и вычислительных методов.

    (a) Скелетно-мышечная сеть была сначала преобразована в двудольную матрицу, где 1/0 указывает на наличие / отсутствие связи между мышцами и костями. (b) Сообщества топологически связанных мышц идентифицируются путем (1) преобразования гиперграфа в граф мышца-мышцы, в котором каждая запись кодирует количество общих костей каждой пары мышц, и (2) впоследствии мышцы были разбиты на сообщества , в котором составляющие члены более плотно связаны с другими членами своего сообщества, чем с членами других сообществ.(c) Чтобы облегчить пертурбации, скелетно-мышечная сеть была физически встроена, так что кости (узлы) изначально располагались в их правильных анатомических положениях. (d) Чтобы понять влияние отдельных мышц на взаимосвязанную систему, все узлы, связанные выбранным гиперребром, были возмущены в четвертом пространственном измерении.

    https://doi.org/10.1371/journal.pbio.2002811.g001

    Костно-ориентированный граф A и мышечный граф B (рис. 1b) — это просто одномодовые проекции C.Проекция на кости A = C T C, а проекция на мышцы B = CC T . Затем диагональные элементы были установлены равными нулю, в результате чего мы получили взвешенную матрицу смежности [5]. Мы получили оценочные анатомические местоположения центра масс каждой мышцы (и кости), изучив анатомические тексты [19] и оценив x-, y- и z-координаты для отображения на графическом изображении человеческого тела (рис. 1c). .

    Расчет баллов удара

    Чтобы измерить потенциальную функциональную роль каждой мышцы в сети, мы использовали классический пертурбативный подход.Чтобы максимизировать простоту и потенциал для фундаментальной интуиции, мы смоделировали опорно-двигательную систему как систему точечных масс (костей) и пружин (мышц). Мы растянули мышечную пружину и наблюдали влияние этого возмущения на расположение всех остальных мышц. Физически, чтобы повредить мышцу, мы смещали все кости, связанные с этой мышцей, на одинаковую величину и в том же направлении, растягивая мышцу, и удерживали эти кости на новом месте. Этот процесс также математически эквивалентен простому изменению жесткости пружины, относящейся к конкретной мышечной пружине.Затем системе позволяли достичь равновесия. Мы зафиксировали кости по средней линии и по периферии в пространстве, чтобы предотвратить смещение системы. Чтобы количественно оценить влияние возмущения этой единственной мышечной пружины, мы определили движение узла и следующим образом: где l ij — смещение между узлами i и j, x ij — невозмущенное расстояние между узлами i и j, m — масса узла (которую мы установили равной единице для всех узлов в сети) , β = 1 — коэффициент демпфирования, r i — положение узла i , A — взвешенная матрица смежности графа, ориентированного на кости, и S ij представляет собой сумму всех сил пружин мышцы, к которым подключены узлы i и j.Чтобы нормализовать восстанавливающую силу мышц на узлах, допустим силу пружины мышцы q 1 / (k — 1). Здесь мы установили, что все кости имеют равный вес, а все мышцы имеют одинаковую жесткость пружины, что является упрощением реальной физической анатомии. Для обсуждения того, как учесть дополнительные физические свойства, такие как масса кости и мышечная сила, а также дополнительные результаты с использованием этих свойств, см. S5 Text. Более того, образцы траекторий, которые дают интуитивное представление о динамике нашей модели, были включены в вспомогательную информацию (S8 рис.).

    Чтобы измерить потенциальную функциональную роль каждой мышцы в сети, мы растянули гиперребер мышцы и измерили влияние возмущения на остальную часть сети. Вместо того, чтобы возмущать сеть в каком-то произвольном трехмерном направлении, мы расширили объем нашей симуляции до четвертого измерения. При возмущении мышцы мы смещали все узлы (кости), содержащиеся в этом гиперребре мышцы, на постоянный вектор в четвертом измерении и удерживали их этим смещением (рис. 1d).Затем возмущение в ответ прокатилось по сети пружин. Мы последовательно растягивали каждую мышечную гиперреберь и определили оценку воздействия этого возмущения как общее расстояние, на которое все узлы опорно-двигательной сети перемещаются от их исходных положений. Величина смещения представляет собой суммарное смещение по всем временным точкам, от начала возмущения до соответствующего отсечки для времени уравновешивания. Здесь мы нашли равновесие системы, позволив динамике выровняться в течение достаточного периода времени.Обратите внимание, что равновесие также может быть решено с использованием стационарного, нединамического подхода; мы решили использовать динамику в этом случае для более широкой поддержки будущих приложений.

    Отклонение оценки удара

    Для каждой мышцы мы рассчитали индекс, который количественно определяет, насколько оценка воздействия этой мышцы отклоняется от ожидаемой с учетом степени ее гиперребра; мы называем этот показатель «ударным отклонением». Мы начинаем с построения нулевой модели, которая определяет ожидаемое воздействие при наборе статистических допущений.В текущем исследовании мы использовали несколько различных нулевых моделей с разными наборами допущений, которые мы подробно рассмотрим в следующих разделах. Отклонение воздействия рассчитывалось следующим образом: мы вычисляли среднее значение, стандартное отклонение и 95% доверительные интервалы (ДИ) для каждой из категорий степени нулевого гиперграфа из ансамбля из 100 нулевых гиперграфов. Расстояние от данной мышцы до среднего значения ± 95% доверительного интервала (в зависимости от того, что ближе всего) было вычислено и разделено на стандартное отклонение этого распределения степеней нулевого гиперграфа.Таким образом, мы рассчитали отклонение от ожидаемого значения в стандартных отклонениях (аналогично z-баллу). Таблица 1 содержит мышцы, которые лежат за пределами 95% ДИ коэффициентов отклонения относительно степени их гиперребер. Мышцы можно естественным образом сгруппировать в соответствии с гомункулом, грубым одномерным представлением того, как контрольные области мышц группируются в моторную кору. Для данной группы гомункулов мы рассчитали коэффициент отклонения как количество мышц с положительным отклонением, деленное на общее количество мышц в группе (таблица 2).

    Таблица 1. Мышцы с большей или меньшей нагрузкой, чем ожидалось в модели нулевого гиперграфа.

    Мышцы на левой стороне оказывают меньшее влияние, чем ожидалось, учитывая степень их гиперреберности: их воздействие более чем на 1,96 стандартного отклонения ниже среднего, что указывает на то, что они лежат за пределами 95% доверительного интервала распределения. Мышцы на правой стороне оказывают большее воздействие, чем ожидалось, учитывая степень их гиперреберности: их воздействие более чем на 1,96 стандартного отклонения превышает среднее значение в порядке от наибольшего к наименьшему.В этой таблице показаны мышцы, которые имели наибольшую положительную и наибольшую отрицательную разницу в воздействии, по сравнению с контрольными группами подобранной степени.

    https://doi.org/10.1371/journal.pbio.2002811.t001

    Таблица 2. Категории гомункулов, у которых все мышцы члена оказывают большее влияние, чем ожидалось, или все меньше, чем ожидалось, по сравнению с нулевыми гиперграфами.

    Категории слева полностью состоят из мышц с меньшим воздействием, чем ожидалось, по сравнению с контрольными группами с подобранной степенью.Категории справа полностью состоят из мышц, оказывающих большее воздействие, чем ожидалось, по сравнению с контрольными группами с подобранной степенью.

    https://doi.org/10.1371/journal.pbio.2002811.t002

    Обнаружение сообщества

    Чтобы понять как функцию, так и контроль над опорно-двигательной системой, мы были заинтересованы в определении групп плотно связанных между собой мышц с использованием подхода, основанного на данных. Мы выполнили тип обнаружения сообщества, максимизируя функцию качества модульности, введенную Ньюманом [20]: где P ij — ожидаемый вес ребра в нулевой модели Ньюмана-Гирвана, узел i назначен сообществу g i , узел j назначен сообществу g j , а δ — дельта-функция Кронекера.Максимизируя Q, мы получили разделение узлов (мускулов) на сообщества, так что узлы в одном сообществе были более плотно взаимосвязаны, чем ожидалось в сетевой нулевой модели (рис. 1b, справа).

    Здесь мы также использовали параметр разрешения для настройки размера и количества обнаруженных сообществ таким образом, чтобы количество обнаруженных сообществ соответствовало количеству групп внутри гомункула для прямого сравнения. В частности, мы использовали параметр разрешения γ = 4,3, чтобы разделить мышечно-ориентированную матрицу на 22 сообщества (см. Таблицу S8).Мы начали с переопределения исходной мышечно-ориентированной матрицы B, следуя Jutla et al. [21]; мы положили k = Σ i B i , j , а затем мы применили локально жадный алгоритм максимизации модульности типа Лувена к скорректированной матрице [22].

    Указанный выше метод обнаружения сообществ недетерминирован [23]. То есть одно и то же решение не будет достигнуто при каждом отдельном запуске алгоритма. Следовательно, необходимо убедиться, что используемые назначения сообщества хорошо представляют сеть, а не только локальный максимум ландшафта.Поэтому мы максимально увеличили функцию качества модульности в 100 раз, получив 100 различных заданий от сообщества. Из этого набора решений мы определили надежную репрезентативную консенсусную структуру сообщества [24]. S1 Рис. Показывает, как обнаруженные сообщества изменяются в зависимости от параметра разрешения для мышечно-ориентированной сети.

    Сетевые нулевые модели

    Мы используем перепрограммированные графики в качестве нулевой модели, с которой сравниваем эмпирические данные. В частности, мы построили нулевой гиперграф, перемонтировав мышцы, которым присвоена одна и та же категория (таблица 3, определенная ниже), равномерно и случайным образом.Таким образом, мышцы мизинца будут перестроены только внутри мизинца, и аналогично для мышц других категорий. Важно отметить, что этот метод также сохраняет степень каждой мышцы, а также степень распределения всего гиперграфа.

    Категории были присвоены мышцам таким образом, чтобы общая топология опорно-двигательного аппарата была в значительной степени сохранена, а изменения были локализованы в пространстве. В частности, мы разделили мышцы на сообщества размером примерно 3, так что каждая мышца была сгруппирована с двумя мышцами, которые наиболее топологически связаны.Затем мы переставлялись только внутри этих небольших групп. Это управляемый данными способ изменения связей только внутри очень небольших групп связанных мышц.

    Чтобы разделить мышцы на сообщества, мы применили жадный подход к максимизации модульности, аналогичный предыдущей работе [25]. В частности, мы максимизировали модульность системы, так что изменение модульности для перемещения узла n из сообщества c ‘в сообщество c определяется выражением Здесь H — матрица степени от узла к модулю, B ′ — скорректированная матрица, ориентированная на мышцы, а V — штрафной член, гарантирующий, что сообщества будут небольшими и примерно одинакового размера.Конкретно, где N — общее количество узлов в системе, c j — индикаторная переменная, кодирующая назначение сообществом узла j, а δ — дельта-функция Кронекера. Более того, где K обозначает общее количество сообществ. Этот термин наказывает определение набора сообществ, которые сильно различаются по размеру.

    Многомерное масштабирование

    Для проведения многомерного масштабирования (MDS) в сети, ориентированной на мышцы, взвешенная матрица смежности, ориентированная на мышцы, была упрощена до двоичной матрицы (все ненулевые элементы установлены равными 1).На основе этих данных была построена матрица расстояний D, элементы D ij которой равны длине кратчайшего пути между мышцами i и j, или равны 0, если пути не существует. Затем к этой матрице расстояний применяется MDS, чтобы получить ее первый главный компонент с помощью функции MATLAB cmdscale.m. Для построения бинарной матрицы был установлен порог 0, и все значения выше этого порога были преобразованы в 1. Однако, чтобы сделать анализ устойчивым к этому выбору, мы исследовали диапазон пороговых значений, чтобы убедиться, что результаты инвариантны относительно порог.Верхняя граница порогового диапазона была установлена ​​путем определения максимального значения, при котором будет поддерживаться полносвязная матрица; в противном случае матрица расстояний D имела бы элементы бесконечного веса. В нашем случае это значение составило 0,0556 × max (B ′). В пределах этого диапазона пороговых значений (т.е. для всех пороговых значений, приводящих к полностью связанным матрицам) результаты были качественно согласованными. В качестве дополнительного анализа мы также использовали метод построения матрицы расстояний из взвешенной матрицы смежности, чтобы исключить пороговую обработку (S5 Fig), и мы снова наблюдали качественно согласованные результаты.

    Данные о мышечных травмах

    Мы рассчитали корреляцию между оценкой удара и временем восстановления после мышечной травмы. Время восстановления после травм было собрано из литературы по спортивной медицине и включало травмы трехглавой мышцы плеча и плечевых мышц [26]; мышцы большого пальца [27]; latissimus dorsi и teres major [28]; двуглавая мышца плеча [29]; голеностопные мышцы [30]; мышцы шеи [31]; мышцы челюсти [32]; мышцы бедра [33]; мышцы глаз / век [34]; и мышцы колена [35], локтя [36] и запястья / кисти [37].Время восстановления и соответствующие ссылки, перечисленные в таблице 4, представляют собой среднее время восстановления, полученное в результате популяционных исследований. Если в литературе сообщалось о диапазоне различных уровней тяжести и связанных с ними сроков восстановления для конкретной травмы, выбирался наименее тяжелый уровень. Если травма была зарегистрирована для группы мышц, а не для одной мышцы, отклонение оценки удара для этой группы усреднялось вместе. Точки данных для групп мышц были взвешены в соответствии с количеством мышц в этой группе с целью линейной подгонки.Подгонка была произведена с использованием функции MATLAB, fitlm.m, с параметром «Robust», установленным на «on». Устойчивая регрессия — это метод регрессии, разработанный, чтобы быть менее чувствительным к выбросам в данных, при котором выбросы имеют пониженный вес в регрессионной модели.

    Данные области соматотопической репрезентации

    Мы рассчитали корреляцию между отклонением оценки воздействия и площадью соматотопической репрезентации, относящейся к определенной группе мышц. Ареалы представительства были собраны из двух отдельных источников [38,39].Объемы и соответствующие ссылки перечислены в Таблице 5. В обоих исследованиях испытуемых просили повторно сформулировать сустав, и были записаны объемы областей первичной моторной коры, которые претерпели наибольшие изменения в BOLD-сигнале. Затем мы рассчитали коэффициент корреляции между объемами коры и средним воздействием всех мышц, связанных с этим суставом, как определено в таблицах Hosford Muscle. Мы обнаружили значительную линейную корреляцию между двумя показателями с помощью функции MATLAB, fitlm.м, при этом для параметра «Надежность» установлено значение «Вкл.».

    Результаты

    Структура опорно-двигательного аппарата человека

    Чтобы изучить структурные взаимосвязи опорно-двигательного аппарата человека, мы использовали подход гиперграфа. Основываясь на последних достижениях сетевой науки [5], мы исследовали опорно-двигательный аппарат как сеть, в которой кости (сетевые узлы) соединены друг с другом мышцами (сетевые гиперребра). Гиперребро — это объект, соединяющий несколько узлов; мышцы соединяют несколько костей через точки начала и вставки.Степень гиперребра k равна количеству узлов, которые оно соединяет; таким образом, степень мышцы — это количество костей, с которыми она контактирует. Например, трапеция — это гиперребро высокой степени, которое связывает 25 костей лопатки и позвоночника; Напротив, приводящая мышца большого пальца представляет собой гиперребро низкой степени, которое соединяет 7 костей руки (Рис. 2a и 2b). Набор гиперребер (мышц) с общими узлами (костями) называется гиперграфом: граф H = (V, E) с N узлами и M гиперребрами, где V = {v 1 , …, v N } — это набор узлов, а E = {e 1 , …, e M } — набор гиперребер.

    Рис. 2. Структура гиперграфа.

    (a) Слева: анатомический рисунок трапеции. Справа: преобразование трапеции в гиперребро (красный; степень k = 25), соединяющее 25 узлов (костей) на голове, плече и позвоночнике. (б) Приводящая мышца большого пальца, соединяющая 7 костей руки. (в) Пространственная проекция распределения степеней гиперребер на тело человека. Гиперребра высокой степени наиболее сильно сконцентрированы в ядре. (d) Скелетно-мышечная сеть отображается в виде двудольной матрицы (1 = соединена, в противном случае 0).(e) Распределение степени гиперребра для гиперграфа опорно-двигательного аппарата, которое значительно отличается от ожидаемого в случайном гиперграфе. Данные доступны для (e) в DOI : 10.5281 / zenodo.1069104.

    https://doi.org/10.1371/journal.pbio.2002811.g002

    Представление опорно-двигательного аппарата человека в виде гиперграфа облегчает количественную оценку его структуры (рис. 2c). Мы заметили, что распределение степени гипреберья является тяжелым: большинство мышц связывают 2 кости, а несколько мышц связывают многие кости (рис. 2d и 2e).Наклон распределения степеней существенно отличается от случайных сетей (двухвыборочный критерий Колмогорова-Смирнова, KS = 0,37, p <0,0001, см. Материалы и методы) [5], что свидетельствует о наличии мышц неожиданно низкой и высокая степень (рис. 2д).

    Функция опорно-двигательного аппарата человека

    Чтобы исследовать функциональную роль мышц в опорно-двигательном аппарате, мы использовали упрощенную модель опорно-двигательного аппарата и попытались выяснить, может ли эта модель генерировать полезные клинические корреляты.Мы реализовали физическую модель, в которой кости образуют основной каркас тела, а мышцы скрепляют эту структуру. Каждый узел (кость) представлен как масса, пространственное расположение и движение которой физически ограничены гиперребрами (мышцами), с которыми он связан. В частности, кости — это точки, расположенные в их центре масс, заимствованные из текстов по анатомии [19], а мышцы — это пружины (затухающие гармонические осцилляторы), соединяющие эти точки [40,41]; для гиперребра степени k мы создали k (k — 1) / 2 пружин, соединяющих k узлов.То есть для мышцы, соединяющей k костей, мы разместили пружины так, чтобы каждая из k мышц имела прямое пружинное соединение с каждой из других k — 1 костей.

    Затем мы взволновали каждую из 270 мышц тела и рассчитали оценку их воздействия в сети (см. Материалы и методы и рис. 1c и 1d). Когда мышца физически смещается, она вызывает волнообразное смещение других мышц по всей сети. Оценка удара мышцы — это среднее смещение всех костей (и косвенно мышц) в результате его первоначального смещения.Мы наблюдали значительную положительную корреляцию между степенью мышечной массы и оценкой воздействия (F (1,268) = 23,3, R 2 = 0,45, p <0,00001; рис. 3a), предполагая, что структура гиперребра определяет функциональную роль мышц в опорно-двигательном аппарате. сеть. Мышцы с большим количеством точек прикрепления и начала имеют большее влияние на опорно-двигательный аппарат, когда они нарушены, чем мышцы с небольшим количеством точек прикрепления и начала [42]. Мы можем получить более полное представление о результатах этого анализа, подробно изучив взаимосвязь между оценкой воздействия и статистическими показателями топологии сети.На рис. S11 мы показываем, что функция сети, измеренная с помощью оценки воздействия, значительно коррелировала со средней длиной кратчайшего пути. Хотя сетевая статистика статична по своей природе, их функциональная интерпретация обеспечивается пертурбативным моделированием динамики системы.

    Рис. 3. Исследование функции опорно-двигательного аппарата.

    (a) Оценка удара, построенная как функция степени гиперребра для модели нулевого гиперграфа и наблюдаемого гиперграфа опорно-двигательного аппарата.(b) Отклонение оценки воздействия коррелирует со временем восстановления мышц после травмы мышц или групп мышц (F (1,12) = 37,3, R 2 = 0,757, p <0,0001). Заштрихованные области указывают 95% доверительный интервал, а точки данных масштабируются в соответствии с количеством включенных мышц. График пронумерован следующим образом, что соответствует таблице 4: трицепс (1), большой палец (2), широчайшая мышца спины (3), двуглавая мышца плеча (4), голеностопный сустав (5), шея (6), челюсть (7), плечо. (8), большая круглая (9), бедро (10), глазные мышцы (11), колено (12), локоть (13), запястье / кисть (14). Данные доступны в DOI : 10.5281 / zenodo.1069104.

    https://doi.org/10.1371/journal.pbio.2002811.g003

    В качестве руководства для интерпретации важно отметить, что оценка воздействия, хотя и в значительной степени коррелирована со степенью мускулатуры, не полностью с ее помощью (рис. 3а). . Вместо этого, структура локальной сети, окружающей мышцу, также играет важную роль в ее функциональном воздействии и способности восстанавливаться. Чтобы лучше количественно оценить влияние этой структуры локальной сети, мы спросили, существуют ли мышцы, которые имеют значительно более высокие или значительно более низкие оценки воздействия, чем ожидалось в нулевой сети.Мы определили положительное (отрицательное) отклонение оценки воздействия, которое измеряет степень, в которой мышцы более (менее) воздействуют, чем ожидалось в сетевой нулевой модели (см. Материалы и методы). В результате этого расчета был получен показатель, который выражает влияние конкретной мышцы по сравнению с мышцами с идентичной степенью гиперребер в нулевой модели. Другими словами, этот показатель учитывает сложность конкретной мышцы (таблица 1).

    Является ли эта математическая модель клинически актуальной? Отвечает ли тело по-разному на травмы мышц с более высокой оценкой удара, чем на мышцы с более низкой оценкой удара? Чтобы ответить на этот вопрос, мы оценили потенциальную взаимосвязь между воздействием на мышцы и временем восстановления после травмы.В частности, мы собрали данные о спортивных травмах и времени между получением травмы и возвращением в спорт. Мы отметили, что время восстановления сильно коррелировало с отклонениями оценки удара отдельной мышцы или группы мышц (F (1,12) = 37,3, R 2 = 0,757, p <0,0001; Рис. 3b), что позволяет предположить что наша математическая модель предлагает полезный клинический биомаркер реакции сети на повреждение. Мы отмечаем, что важно учитывать тот факт, что восстановление может быть медленнее у человека, которому требуются максимальные усилия в спортивном спорте, по сравнению с человеком, который стремится только функционировать в повседневной жизни.Поэтому, чтобы обобщить наши результаты для всего населения, мы также изучили данные о времени восстановления, полученные от не спортсменов, и представляем эти дополнительные результаты во вспомогательной информации (текст S6).

    Наконец, чтобы получить интуитивное представление о том, как очаговая травма может вызывать отдаленные эффекты, потенциально замедляющие восстановление, мы рассчитали влияние мышц голеностопного сустава и определили, какие другие мышцы были затронуты сильнее всего. То есть для каждой отдельной мышцы голеностопного сустава мы рассчитали воздействие на каждую из оставшихся 264 мышц, не относящихся к голеностопному суставу, а затем усреднили это значение по всем мышцам голеностопного сустава.Из 264 мышц, не связанных с голеностопным суставом, единственная мышца, на которую больше всего воздействует нарушение мышц голеностопного сустава, — это двуглавая мышца бедра, а второй по величине — латеральная широкая мышца колена. Кроме того, мышца бедра, на которую больше всего влияет нарушение, — это камбаловидная мышца.

    Контроль опорно-двигательного аппарата человека

    Какая связь между функциональным воздействием мышцы на тело и нейронной архитектурой, которая влияет на контроль? Здесь мы исследуем отношения между опорно-двигательной системой и первичной моторной корой.Мы исследовали область карты коры головного мозга, посвященную мышцам с низким или высоким воздействием, опираясь на анатомию моторной полосы, представленной в моторном гомункуле [43] (рис. 4a), грубое одномерное представление тела в головном мозге. [44]. Мы заметили, что области гомункула по-разному контролируют мышцы с положительной и отрицательной оценкой отклонения воздействия (таблица 2). Более того, мы обнаружили, что области гомункула, контролирующие только положительно (отрицательно) отклоняющиеся мышцы, как правило, располагаются медиально (латерально) на моторной полосе, что предполагает наличие топологической организации ожидаемого воздействия мышцы на нервную ткань.Чтобы исследовать эту закономерность более глубоко, для каждой области гомункула мы рассчитали коэффициент отклонения как процент мышц, которые положительно отклонились от ожидаемой оценки воздействия (т. Е. Значение 1 для бровей, глаз, лица и значение 0 для колена , бедро, плечо; см. Таблицу 2). Мы обнаружили, что коэффициент отклонения достоверно коррелировал с топологическим положением на моторной полосе (F (1,19) = 21,3, R 2 = 0,52, p <0,001; рис. 4b).

    Рис. 4. Зондирование опорно-двигательного аппарата.

    (а) Гомункул первичной моторной коры, построенный Пенфилдом. (b) Коэффициент отклонения значительно коррелирует с гомункулярной топологией (F (1,19) = 21,3, R 2 = 0,52, p <0,001), уменьшаясь от медиального (область 0) к латеральному (область 22). (c) Отклонение оценки воздействия достоверно коррелирует с объемом активации моторной полосы (F (1,5) = 14,4, R 2 = 0,743, p = 0,012). Точки данных имеют размер в соответствии с количеством мышц, необходимых для конкретного движения.График пронумерован следующим образом, что соответствует таблице 5: большой палец (1), указательный палец (2), средний палец (3), кисть (4), все пальцы (5), запястье (6), локоть (7). (d) Корреляция между пространственным упорядочением категорий гомункулов Пенфилда и линейной мышечной координатой из многомерного масштабного анализа (F (1,268) = 316, R 2 = 0,54, p <0,0001). Данные доступны в DOI : 10.5281 / zenodo.1069104.

    https://doi.org/10.1371/journal.pbio.2002811.g004

    В качестве более строгой проверки этой взаимосвязи между воздействием мышцы на сеть и нейронной архитектурой мы сопоставили данные о физических объемах функциональной активации на основе МРТ на моторной полосе, которые предназначены для отдельных движений (например, , сгибание пальцев или моргание глаз). Объемы активации определяются как вокселы, которые активируются (определяемые сигналом, зависящим от уровня кислорода в крови) во время движения [38,39]. Важно отметить, что мы обнаружили, что объем функциональной активации независимо предсказывает отклонение оценки удара мышц (рис. 4c, F (1,5) = 14.4, p = 0,012, R 2 = 0,743), что согласуется с интуицией, что мозг будет уделять больше места в сером веществе контролю над мышцами, которые более эффективны, чем ожидалось в нулевой модели. Опять же, отклонение от удара — это показатель, который учитывает степень гиперребер конкретной мышцы и относится к удару мышц с идентичной степенью гиперребер в нулевой модели. Таким образом, ударное отклонение измеряет топологию локальной сети, а не просто непосредственные соединения рассматриваемой мышцы.

    В качестве последнего теста этой взаимосвязи мы спросили, оптимально ли сопоставлена ​​стратегия нервного контроля, воплощенная в моторной полоске, с группами мышц. Мы построили мышечно-ориентированный график, соединив две мышцы, если они касаются одной и той же кости (рис. 1c, слева). Мы наблюдали наличие групп мышц, плотно связанных друг с другом, имеющих общие кости. Мы извлекли эти группы, используя метод кластеризации, разработанный для сетей [45,46], который обеспечивает разделение мышц на сообщества на основе данных (рис. 1b, справа).Чтобы сравнить структуру сообщества, присутствующую в мышечной сети, с архитектурой системы нейронного контроля, мы рассмотрели каждую из 22 категорий в моторном гомункуле [18] как отдельное нейронное сообщество и сравнили эти присвоения сообществу, основанные на мозге, с заданиями сообщества. полученные из управляемого данными раздела мышечной сети. Используя коэффициент Рэнда [47], мы обнаружили, что распределение сообществ как для гомункула, так и для мышечной сети было статистически схожим (z Rand > 10), что указывает на соответствие между модульной организацией опорно-двигательного аппарата и структурой гомункула.Например, трицепс плеча и двуглавая мышца плеча принадлежат к одной гомункулярной категории, и мы обнаружили, что они также принадлежат к одному и тому же сообществу топологических мышечных сетей.

    Затем, поскольку гомункул имеет линейную топологическую организацию, мы спросили, был ли порядок сообществ внутри гомункула (Таблица 3) подобен управляемому данными упорядочению групп мышц в теле, как определено с помощью MDS [48]. Из сети, ориентированной на мышцы (рис. 1b), мы получили матрицу расстояний, которая кодирует наименьшее количество костей, которые необходимо пройти, чтобы перейти от одной мышцы к другой.MDS этой матрицы расстояний выявил одномерные линейные координаты для каждой мышцы, так что топологически близкие мышцы были близко друг к другу, а топологически далекие мышцы были далеко друг от друга. Мы заметили, что линейная координата каждой мышцы значительно коррелирует с ее категорией гомункула (рис. 4d, F (1,268) = 316, p <0,0001, R 2 = 0,54), что указывает на эффективное сопоставление нейронных представлений мышцы. система и сетевая топология мышечной системы тела.

    Наши результаты на рис. 4d демонстрируют соответствие между топологией гомункула и управляемым данными упорядочением мышц, полученным с учетом топологических расстояний между ними. Этот результат можно интерпретировать одним из двух способов: одна разумная гипотеза состоит в том, что, поскольку большинство соединений в опорно-двигательной сети являются короткодействующими, открытие в основном обусловлено связями ближнего действия. Вторая разумная гипотеза состоит в том, что, хотя соединения ближнего действия являются наиболее распространенными, соединения дальнего действия образуют важные внутримодульные связи, которые помогают определять организацию сети.Чтобы выбрать между этими двумя гипотезами, мы рассмотрели два варианта нашего эксперимента MDS: один включает только соединения, длина которых меньше средней длины соединения, а другой — только соединения, длина которых превышает среднюю длину соединения. Мы обнаружили, что упорядочение на основе данных, полученное только из коротких и только длинных соединений, привело к значительным корреляциям с гомункулярной топологией (F (1,268) = 24,9, R 2 = 0,085, p <0,0001 и F (1,268). = 5, R 2 = 0.018, p = 0,026 соответственно). Примечательно, что включение как длинных, так и коротких соединений приводит к более сильной корреляции с гомункулярной топологией, чем рассмотрение любого из них независимо, что предполагает зависимость от соединений любой длины. В будущем было бы интересно проверить степень изменения этой межсетевой карты у людей с двигательными нарушениями или изменениями после инсульта.

    Обсуждение

    Структура опорно-двигательного аппарата человека

    Представляя сложную взаимосвязь опорно-двигательного аппарата в виде сети костей (представленных узлами) и мышц (представленных гиперребрами), мы получили ценную информацию об организации человеческого тела.Изучение анатомических сетей с использованием аналогичных методов становится все более распространенным в области эволюционной биологии и биологии развития [10]. Однако этот подход обычно применялся только к отдельным частям тела, включая руку [49], голову [11] и позвоночник [12], тем самым давая представление о том, как развивалась эта часть организма [50, 51]. Более того, даже после моделирования всей мускулатуры тела [13] и нервно-мышечно-скелетной системы [14] в более общем плане некоторые количественные утверждения могут остаться неуловимыми, в значительной степени из-за отсутствия математического языка, на котором можно было бы обсуждать сложность взаимосвязи. узоры.В этом исследовании мы предлагаем явное и экономное представление всей опорно-двигательной системы в виде графа узлов и ребер, и это представление позволило нам точно охарактеризовать сеть в целом.

    При моделировании системы как сети важно начать последующее исследование с характеристики нескольких ключевых архитектурных свойств. Одним из наиболее фундаментальных показателей структуры сети является ее распределение по степеням [52], которое описывает неоднородность подключения узла к его соседям таким образом, чтобы можно было понять, как формировалась система [7].Мы заметили, что степень распределения опорно-двигательного аппарата значительно отличается от ожидаемого в нулевом графе (рис. 2e), показывая меньше узлов высокой степени и переизбыток узлов низкой степени. Несоответствие между графами реальной и нулевой модели согласуется с тем фактом, что опорно-двигательная система человека развивается в контексте физических и функциональных ограничений, которые вместе определяют ее явно неслучайную архитектуру [53]. Распределение степеней этой сети показывает пик примерно на второй степени, за которым следует относительно тяжелый хвост узлов высокой степени.Последняя особенность обычно наблюдается во многих типах реальных сетей [54], чьи концентраторы могут быть дорогостоящими в разработке, обслуживании и использовании [55,56], но играют критическую роль в устойчивости системы, обеспечивая быстрое реагирование [55], буферизация изменчивости окружающей среды [57] и облегчение выживания и воспроизводства [58]. Первая особенность — пик распределения — согласуется с интуицией, что большинство мышц опорно-двигательного аппарата соединяются только с двумя костями, главным образом для функции простого сгибания или разгибания в суставе.Напротив, есть только несколько мышц, которые требуют высокой степени для поддержки очень сложных движений, таких как поддержание выравнивания и угла позвоночника за счет одновременного управления движением многих костей. Эти ожидаемые результаты обеспечивают важную проверку модели, а также предлагают полезную визуализацию опорно-двигательного аппарата.

    Скелетно-мышечная сеть характеризуется особенно интересным свойством, которое отличает ее от нескольких других реальных сетей: тем фактом, что она встроена в трехмерное пространство [59].Это свойство не наблюдается в семантических сетях [60] или World Wide Web [61], которые кодируют отношения между словами, концепциями или документами в некоторой абстрактной (и, скорее всего, неевклидовой) геометрии. Напротив, опорно-двигательная система представляет собой объем с узлами, имеющими определенные координаты, и краями, представляющими физически протяженные ткани. Чтобы лучше понять физическую природу скелетно-мышечной сети, мы исследовали анатомическое расположение мышц с разной степенью (рис. 2c).Мы заметили, что мышечные центры расположены преимущественно в торсе, обеспечивая плотную структурную взаимосвязь, которая может стабилизировать ядро ​​тела и предотвратить травмы [62]. В частности, мышцы высокой степени группируются вокруг средней линии тела, рядом с позвоночником, вокруг таза и плечевого пояса, что согласуется с представлением о том, что для маневренности и устойчивости этих областей требуется совокупность мышц с различной геометрией и свойствами тканей [63 ]. Действительно, мышцы в этих местах должны поддерживать не только сгибание и разгибание, но также отведение, приведение и внутреннее и внешнее вращение.

    Важно отметить, что в опорно-двигательном аппарате у разных людей существуют значительные различия, и не все анатомические атласы согласуются с наиболее репрезентативным набором точек вставки и происхождения. Представленные здесь результаты отражают то, как опорно-двигательная система была представлена ​​в тексте, из которого она была построена [19], и поэтому обеспечивают только одно возможное сетевое представление опорно-двигательной системы. Чтобы оценить надежность наших результатов при разумных вариациях конфигурации опорно-двигательного аппарата, мы создали вторую опорно-двигательную сеть из альтернативного атласа [64].Используя этот второй атлас, мы наблюдали последовательные результаты и сообщаем об этом дополнительном анализе в S3 Text.

    Также важно отметить, что мы сопоставили первый атлас [19] в скелетно-мышечный граф, состоящий как из костных, так и из некостных узлов. Этот выбор уравнивает структурные роли костей и определенных сухожилий и связок, что, по общему признанию, является упрощением биологии. Одним из оправданий такого упрощения является то, что некостные структуры часто служат важными точками прикрепления мышц (т.э., подошвенная фасция стопы). Таким образом, разумно разделить опорно-двигательную сеть на две категории мышц и структур, которые служат точками прикрепления мышц, как мы это сделали здесь. Тем не менее, эта вторая категория довольно разнородна по составу, и в будущей работе можно также рассмотреть возможность построения многослойного графа с отдельным слоем, учитывающим каждый тип структуры мышечного прикрепления. Чтобы подтвердить, что наши результаты и интерпретации не претерпевают значительных изменений из-за наличия точек прикрепления некостных мышц, мы удалили такие точки в альтернативном атласе и отметили, что наши основные результаты все еще остаются в силе (см. Текст S3).

    Функция опорно-двигательного аппарата человека

    Чтобы лучше понять функциональную роль отдельной мышцы во взаимосвязанной опорно-двигательной системе, мы реализовали основанную на физике модель свойств импульсной реакции сети, кодируя кости как точечные массы и мышцы как пружины [65]. Примечательно, что эта очень упрощенная модель опорно-двигательного аппарата способна идентифицировать важные функциональные особенности. Хотя мышцы высокой степени также имели тенденцию иметь большое влияние на реакцию сети (рис. 3а), было несколько заметных отклонений от этой тенденции (таблица 1).

    Мышца, оказывающая наименьшее воздействие по сравнению с ожидаемой, — это orbicularis oculi, мышца, используемая для управления движением века. Эта мышца небольшая и относительно изолированная в теле, берет начало и прикрепляется к костям черепа. Мышцы лица в целом образуют плотное и изолированное сообщество, с немногими связями, выходящими за пределы этого сообщества. Эти факторы, вероятно, способствуют слабому воздействию этой мышцы, и аналогичный аргумент может быть сделан в отношении оставшихся двух мышц с меньшим воздействием, чем ожидалось, которые также являются мышцами лица.

    Мышцы с большей нагрузкой, чем ожидалось, более многочисленны, но почти полностью расположены в верхней конечности или поясе верхней конечности. Длинный разгибатель запястья, anconeus, brachioradialis и brachialis мышцы являются собственными мышцами руки, последние три действуют в локтевом суставе. Все эти мышцы могут иметь более сильное воздействие, чем ожидалось в нулевой модели, потому что они могут прямо или косвенно влиять на движение многих костей запястья и кисти. Наблюдаемое сильное воздействие этих мышц может быть результатом того факта, что они контролируют движение конечности, а на конце конечности находится множество костей, движение которых напрямую зависит от этих мышц.Остальные ударные мышцы, за исключением грушевидной мышцы, прикрепляют верхнюю конечность к осевому скелету. Этими мышцами являются коракобрахиальная, подостная, надостная, подлопаточная, малая круглая, большая круглая и большая грудная мышцы. Эти мышцы, как и предыдущие четыре, обладают тем свойством, что они контролируют движение всей конечности, что, вероятно, способствует их влиянию. В отличие от предыдущей группы, эти мышцы также соединяются с осевым скелетом, что также может усилить их воздействие.Многие из этих мышц берут свое начало на костях плечевого пояса и могут влиять на все другие мышцы плечевого пояса и, возможно, на все кости, связанные с этими мышцами. Такая же динамика, вероятно, существует в нижней конечности, что отражается наличием грушевидной мышцы тазового пояса. Подробное обсуждение того, как структура локальной сети и конфигурация мышц могут взаимодействовать с отклонением от удара, представлено в S7 Text. В дополнение к нашей работе, представленной во вспомогательной информации, дальнейшее понимание свойств этих выбросов может быть получено путем проведения экспериментов по тщательному изучению костей, на которые сильнее всего воздействует каждая из этих мышц.

    Хотя сетевое представление системы может дать базовую физическую интуицию благодаря своей скупости и простоте, оно также остается безразличным ко многим деталям архитектуры и функций системы. Извечный вопрос, могут ли эти базовые модели сложных систем обеспечить точные прогнозы реальных результатов. Мы рассмотрели этот вопрос, изучив взаимосвязь между оценкой удара мышцы и количеством времени, которое требуется человеку для восстановления после травмы.Мы количественно оценили время восстановления, суммируя (i) время восстановления после первичной инвалидности, вызванной первоначальным мышечным повреждением, и (ii) время восстановления после любых вторичных нарушений, вызванных изменением использования других мышц в сети из-за первоначального травма мышц [66]. Мы обнаружили, что отклонение от ожидаемой оценки воздействия в нулевой сети значимо коррелировало со временем восстановления (рис. 3b), подтверждая идею о том, что очаговая травма может оказывать длительное воздействие на организм из-за изначально взаимосвязанной природы опорно-двигательного аппарата.

    Действительно, известно, что мышечные изменения в одной части тела влияют на другие группы мышц. Например, укрепление мышц бедра может привести к улучшению функции колена после замены коленного сустава [67]. Изменение мышечной функции в голеностопном суставе после растяжения связок может вызвать изменение функции мышц бедра [68,69], результат, воспроизведенный нашей моделью (которая показала, что двуглавая мышца бедра и латеральная широкая мышца бедра больше всего пострадали от травмы лодыжки), а повреждение мышц конечностей может приводят к вторичному повреждению диафрагмы [70].Наша модель предлагает математически принципиальный способ предсказать, какие мышцы с большей вероятностью будут иметь такое вторичное влияние на более крупную опорно-двигательную систему, а какие мышцы подвержены риску вторичного повреждения, учитывая первичное повреждение в определенном участке мышцы. В будущем было бы интересно проверить, могут ли эти прогнозы повлиять на полезные корректировки клинических вмешательств, явно принимая во внимание риск вторичного повреждения определенных мышц. Ранее профилактика вторичных мышечных травм в основном сводилась к криотерапии [71,72] и еще не была мотивирована такой механистической моделью.Наконец, важный вопрос, который следует задать, заключается в том, насколько эта конфигурация опорно-двигательного аппарата является эволюционной выгодной и как эволюционное давление могло оптимизировать воздействие на мышцы. Интуитивно можно было ожидать, что эволюционное давление снижает мышечную нагрузку, возможно, за счет увеличения мышечной избыточности. Тщательное исследование эволюционных преимуществ топологии костно-мышечной сети было бы интересной темой для будущей работы.

    Контроль опорно-двигательного аппарата человека

    Учитывая сложность костно-мышечной сети и ее критическую роль в выживании человека, естественно задать вопросы о том, как эта сеть управляется человеческим мозгом.Действительно, изучение моторного контроля имеет долгую и яркую историю [73], которая дала важную информацию о том, как мозг может успешно и точно совершать произвольные движения, несмотря на такие проблемы, как избыточность, шум [74], задержки сенсорной обратной связи. [75], неопределенность окружающей среды [76], нервно-мышечная нелинейность [77] и нестационарность [78]. Здесь мы взяли отличный, но дополняющий подход и спросили, как топология скелетно-мышечной сети может быть отображена на топологии моторной полосы в коре головного мозга.Мы начали с того, что отметили, что ударное отклонение мышцы положительно коррелирует с размером коркового объема, предназначенного для его контроля (рис. 4c). Одна интерпретация этой взаимосвязи состоит в том, что те мышцы, которые своими непосредственными связями оказывают большее влияние, чем ожидалось в нулевой модели, имеют тенденцию контролировать более сложные движения и, следовательно, требуют большего количества нейронов для управления этими движениями [79]. Вторая интерпретация основана на эволюционном аргументе о том, что мышцы с большей нагрузкой нуждаются в большей избыточности в их системах управления [80], и эта избыточность принимает форму большей корковой области.

    Не говоря уже о локальных объемах коры [81], можно также захотеть понять, в какой степени крупномасштабная организация опорно-двигательной сети отражает организацию контролирующей ее моторной полосы. Основываясь на недавнем применении методов выявления сообществ к изучению анатомии черепа [11,82,83], мы сообщили о модульной организации мышечной сети: группы мышц, в которых мышцы одной группы с большей вероятностью соединяются с одной. кроме мышц в других группах.Что еще более интересно, мы заметили, что сообщества мышц очень похожи на известную группу мышц моторной полосы (рис. 1b, справа): мышцы, которые имеют тенденцию соединяться с теми же костями, что и друг друга, также имеют тенденцию контролироваться той же частью моторной полосы. . Более того, естественное линейное упорядочение мышечных сообществ — такое, что сообщества располагаются близко друг к другу на линии, если они имеют общие сетевые соединения — имитирует порядок контроля в моторной полосе (Рис. 4d). Эти результаты дополняют важную предыдущую работу, предполагающую, что одномерная организация моторной полосы связана как со структурной, так и со структурной организацией опорно-двигательного аппарата [84,85].Фактически, результаты более конкретно предлагают определение оптимального сетевого управления на уровне сети: согласованность линейной карты от сообществ опорно-двигательного аппарата до сообществ моторных полос.

    Наконец, мы исследовали физические места коркового контроля пораженных мышц. Мы заметили, что мышцы с большим воздействием, чем ожидалось, при нулевом графике, как правило, контролируются средними точками на моторной полосе, в то время как мышцы с меньшим воздействием, чем ожидалось, обычно контролируются боковыми точками на моторной полосе (рис. 4b).Эта пространственная специфика указывает на то, что организация моторной полосы ограничивается физическим расположением тела, а также аспектами функционирования мышц. Предыдущие исследования изучали общее временное соответствие между корковой активностью и мышечной активностью во время движения [86], но мало что известно о топологическом соответствии.

    Методологические соображения

    Построение гиперграфа на основе опорно-двигательного аппарата человека требует допущений и упрощений, влияющих на гибкость текущей модели.Наиболее заметным является разделение системы на две категории: мышцы и кости. Эти категории не содержат дополнительной информации и, следовательно, не учитывают особенности внутренней архитектуры мышцы или кости. Это упрощение вводит несколько ограничений для пертурбативной модели, включая возможность моделирования функциональной архитектуры сложных мышц или мышц, обладающих способностью независимо сокращать подмножество волокон. Например, двуглавая двуглавая мышца плеча берет начало как на лопатке, так и на супрагленоидном бугорке, и можно сокращать волокна одной головки отдельно от волокон другой головки.Дальнейшая работа может расширить нашу структуру моделирования, чтобы представить эту сложную функциональную архитектуру. Более того, немышечные структуры мягких тканей, важные для опорно-двигательного аппарата, не могут быть четко учтены. Эти структуры, включая сухожилия и связки, могут быть либо (1) закодированы как кости, как в основной текстовой сети, либо (2) исключены из сети, как в приложении; ни один из вариантов не является полностью анатомически точным.

    В случае костей модель не может учесть взаимодействия кости и кости (суставы).Большинство мышц действуют на суставы, и исключение суставов затемняет специфическую функцию мышц. То есть модель учитывает тот факт, что мышцы перемещают кости, но не то, как они движутся или в каком направлении. В пертурбативном моделировании отсутствие ограничений на суставы позволяет размещать кости под неестественными углами относительно соседних костей. Кроме того, кости моделируются как точечные массы, которые в пертурбативном моделировании могут позволить костям проходить траектории, связанные с прохождением через пространство, которое на самом деле занято другой костью.Дальнейшая работа может расширить нашу структуру моделирования, чтобы учесть эти дополнительные биофизические ограничения.

    Выводы, полученные с помощью этой модели, являются результатом входных данных. Поскольку индивидуальные вариации существуют в опорно-двигательной системе, они также существуют и в мышечных воздействиях. Мы попытались использовать два набора входных данных, чтобы оправдать наши основные выводы, но эти результаты не могут быть обобщены на все здоровые конфигурации опорно-двигательного аппарата. В частности, степень мышц, подверженная индивидуальным изменениям, может повлиять на воздействие этой мышцы.Каким образом нормативные индивидуальные вариации в степени мышечной массы связаны с вариациями прогнозируемого воздействия на мышцы, является важным вопросом, который, тем не менее, выходит за рамки настоящего исследования.

    Наконец, опорно-двигательный аппарат человека представляет собой сложную и плотно взаимосвязанную сеть. Ни мышцы, ни кости не функционируют как независимые образования. Таким образом, трудно отделить функцию отдельной мышцы от воздействия окружающих мышц. Независимость мускулов может быть частично устранена соответствующим выбором нулевой модели, и наши результаты остаются в силе при множестве вариантов.Тем не менее, при интерпретации этих результатов следует учитывать представление о том, что мышцы — и факторы воздействия — не являются действительно независимыми.

    Заключение

    Таким образом, здесь мы разработали новое сетевое представление опорно-двигательного аппарата, построили структуру математического моделирования для прогнозирования восстановления и подтвердили этот прогноз с данными, полученными при спортивных травмах. Более того, мы напрямую связали сетевую структуру опорно-двигательного аппарата с организацией корковой архитектуры, предполагая эволюционное давление для оптимального сетевого контроля над телом.Мы сравнили структуру, функцию и контроль опорно-двигательного аппарата человека с нулевой системой, в которой небольшие группы тесно связанных мышц переплетены друг с другом. Наши результаты предполагают, что структура, функции и контроль опорно-двигательного аппарата возникают из очень детализированной мелкомасштабной организации, а когда эта мелкая организация разрушается, появляются новые черты. Наша работа напрямую мотивирует будущие исследования, чтобы проверить, можно ли достичь более быстрого восстановления, не только сосредоточив реабилитацию на первичной травме, но и направив усилия на мышцы, на которые воздействует основная мышца.Кроме того, наша работа поддерживает разработку прогностической структуры для определения степени скелетно-мышечных последствий поражения первичной моторной коры головного мозга. Наши результаты являются важным шагом в сетевой науке в клинической медицине [87]. Наши результаты позволяют уменьшить вторичные травмы и ускорить выздоровление.

    Вспомогательная информация

    S1 Таблица. Мышцы с большей или меньшей нагрузкой, чем ожидалось в случайно перестроенных гиперграфах.

    Эта нулевая модель потребовала случайной перестройки мускулов внутри гиперграфа с сохранением степени.Мышцы на левой стороне оказывают меньшее воздействие, чем ожидалось, учитывая степень их гиперреберности: их воздействие более чем на 1,96 стандартного отклонения ниже среднего, что указывает на то, что они лежат за пределами 95% доверительного интервала распределения. Мышцы на правой стороне оказывают большее воздействие, чем ожидалось, учитывая степень их гипреберья: их воздействие более чем на 1,96 стандартного отклонения превышает среднее значение, в порядке от наибольшего к наименьшему. В этой таблице показаны мышцы, которые имели наибольшую положительную и наибольшую отрицательную разницу в воздействии, по сравнению с контрольными группами подобранной степени.

    https://doi.org/10.1371/journal.pbio.2002811.s008

    (XLSX)

    S2 Таблица. Категории гомункулов, мышцы-члены которых либо все оказывают большее влияние, чем ожидалось, либо все оказывают меньшее влияние, чем ожидалось, по сравнению со случайно перестроенными гиперграфами.

    Эта нулевая модель потребовала случайной перестройки мускулов внутри гиперграфа с сохранением степени. Категории слева полностью состоят из мышц с меньшим воздействием, чем ожидалось, по сравнению с контрольными группами с подобранной степенью.Категории справа полностью состоят из мышц, оказывающих большее воздействие, чем ожидалось, по сравнению с контрольными группами с подобранной степенью.

    https://doi.org/10.1371/journal.pbio.2002811.s009

    (XLSX)

    S3 Таблица. Мышцы с большей или меньшей нагрузкой, чем ожидалось в гиперграфах, случайным образом перестраивались в рамках своей категории гомункулов.

    Эта нулевая модель требовала случайной перестройки мускулов в пределах их категории гомункула, сохраняя степень. Мышцы на левой стороне оказывают меньшее воздействие, чем ожидалось, учитывая степень их гиперреберности: их воздействие больше единицы.96 стандартных отклонений ниже среднего, что указывает на то, что они лежат за пределами 95% доверительного интервала распределения. Мышцы на правой стороне оказывают большее воздействие, чем ожидалось, учитывая степень их гипреберья: их воздействие более чем на 1,96 стандартного отклонения превышает среднее значение, в порядке от наибольшего к наименьшему. В этой таблице показаны мышцы, которые имели наибольшую положительную и наибольшую отрицательную разницу в воздействии, по сравнению с контрольными группами подобранной степени.

    https://doi.org/10.1371/journal.pbio.2002811.s010

    (XLSX)

    S4 Таблица. Категории гомункулов, мышцы-члены которых либо все оказывают большее влияние, чем ожидалось, либо все оказывают меньшее влияние, чем ожидалось, по сравнению с гиперграфами, случайно перепрограммированными в рамках их категории гомункулов.

    Эта нулевая модель требовала случайной перестройки мускулов в пределах их категории гомункула, сохраняя степень. Категории слева полностью состоят из мышц с меньшим воздействием, чем ожидалось, по сравнению с контрольными группами с подобранной степенью. Категории справа полностью состоят из мышц, оказывающих большее воздействие, чем ожидалось, по сравнению с контрольными группами с подобранной степенью.

    https://doi.org/10.1371/journal.pbio.2002811.s011

    (XLSX)

    S5 Таблица. Мышцы с большей или меньшей нагрузкой, чем ожидалось в случайном гиперграфе.

    Эта нулевая модель требовала случайного назначения связей между костями и мышцами, сохраняя только общую степень, а не индивидуальную степень мышц. Мышцы на левой стороне оказывают меньшее воздействие, чем ожидалось, учитывая степень их гиперреберности: их воздействие более чем на 1,96 стандартного отклонения ниже среднего, что указывает на то, что они лежат за пределами 95% доверительного интервала распределения.Мышцы на правой стороне оказывают большее воздействие, чем ожидалось, учитывая степень их гиперреберности: их воздействие более чем на 1,96 стандартного отклонения превышает среднее значение и упорядочено от наибольшего к наименьшему.

    https://doi.org/10.1371/journal.pbio.2002811.s012

    (XLSX)

    S1 Рис. Обнаружение сообщества с разными параметрами разрешения.

    На этом рисунке показано, как выбор параметра разрешения во время обнаружения сообществ изменит количество и размер обнаруженных сообществ.С увеличением параметра разрешения размер отдельных сообществ уменьшается, а количество сообществ увеличивается. (a-d) Обнаружение сообщества для сети, ориентированной на мышцы, с использованием значений γ, равных 1, 2, 8 и 16 соответственно. Окончательная структура сообщества для каждого γ представляет собой согласованное разделение 100 отдельных прогонов алгоритма обнаружения сообщества.

    https://doi.org/10.1371/journal.pbio.2002811.s018

    (EPS)

    S2 Рис. Обнаружение сообщества с разными параметрами разрешения.

    Этот рисунок иллюстрирует стабильность при выбранном параметре настройки γ = 4.3. Здесь мы исследуем разбиения, созданные из близких параметров разрешения γ = 4,2 и γ = 4,4. Визуально кажется, что все три раздела имеют похожую структуру. Два соседних раздела также математически схожи: z-оценка коэффициента Рэнда [47] z Rand (γ = 4,2, γ = 4,3) = 105, z Rand (γ = 4,3, γ = 4,4) = 110 и z Rand (γ = 4,2, γ = 4,4) = 105. Окончательная структура сообщества для каждого γ представляет собой согласованное разделение 100 отдельных прогонов алгоритма обнаружения сообщества.

    https://doi.org/10.1371/journal.pbio.2002811.s019

    (EPS)

    S3 Рис. Визуальное сравнение нулевых моделей.

    Этот рисунок иллюстрирует различия в нулевых двудольных графах. (A) Исходный непереставленный двудольный граф мышца-кость. (B) Случайный нулевой двудольный граф. (C) Случайно перестроенный двудольный граф. (D) Двудольный граф, случайно измененный внутри сообщества, используемый в основном тексте, который переставляет топологию локально, сохраняя при этом глобальную топологию.

    https://doi.org/10.1371/journal.pbio.2002811.s020

    (EPS)

    S4 Рис. Основные результаты в зависимости от нулевой модели.

    Здесь мы показываем результаты с использованием модели случайного гиперграфа или модели перестроенного (переставленного) гиперграфа, которая не поддерживает локальные связи. (A) Оценка удара, построенная как функция степени гиперребра для случайных гиперграфов и наблюдаемого гиперграфа опорно-двигательного аппарата. (B) Оценка удара, нанесенная на график как функция степени гиперребра для переставленных гиперграфов и наблюдаемого гиперграфа опорно-двигательного аппарата.(C) Коэффициент отклонения достоверно коррелирует с гомункулярной категорией (F (1,19) = 6,67, p = 0,018, R 2 = 0,26), уменьшаясь от медиального (область 0) к латеральному (область 22) с использованием случайного нулевая модель гиперграфа. (D) Коэффициент отклонения достоверно коррелирует с гомункулярной категорией (F (1,19) = 6,86, p = 0,017, R 2 = 0,26), уменьшаясь от медиального (область 0) к латеральному (область 22) с использованием пермутированного нулевая модель гиперграфа. (E) Отклонение оценки воздействия значительно коррелирует с площадью активации моторной полосы (F (1,5) = 13.4, p = 0,014, R 2 = 0,72) с использованием случайной нулевой модели гиперграфа. Точки данных имеют размер в соответствии с количеством мышц, необходимых для конкретного движения. (F) Отклонение оценки воздействия значительно коррелирует с площадью активации моторной полосы (F (1,5) = 13,7, p = 0,022, R 2 = 0,73) с использованием пермутированной нулевой модели гиперграфа. Точки данных имеют размер в соответствии с количеством мышц, необходимых для конкретного движения. (G) Отклонение оценки воздействия коррелирует со временем восстановления мышц после травмы мышц или групп мышц (F (1,11) = 64.5, p = 6,3 × 10 −6 , R 2 = 0,85), используя случайную нулевую модель гиперграфа. Точки данных масштабируются в соответствии с количеством задействованных мышц. (H) Отклонение оценки воздействия коррелирует со временем восстановления мышц после травмы мышц или групп мышц (F (1,11) = 70,5, p <0,0001, R 2 = 0,86), больше, чем ожидалось при перестановке — основанная на нулевой модели гиперграфа. Точки данных масштабируются в соответствии с количеством задействованных мышц. Данные доступны в DOI: 10.5281 / zenodo.1069104.

    https://doi.org/10.1371/journal.pbio.2002811.s021

    (EPS)

    S6 Рис. Исследование опорно-двигательного аппарата для альтернативной сети.

    (a) Оценка удара, построенная как функция степени гиперребра для модели нулевого гиперграфа и наблюдаемого гиперграфа опорно-двигательного аппарата. (b) Отклонение оценки воздействия коррелирует со временем восстановления мышц после травмы мышц или групп мышц (F (1,12) = 40,2, p <0,0001, R 2 = 0.77). Заштрихованные области указывают 95% доверительных интервалов, а точки данных масштабируются в соответствии с количеством задействованных мышц. Данные доступны в DOI: 10.5281 / zenodo.1069104.

    https://doi.org/10.1371/journal.pbio.2002811.s023

    (PNG)

    S7 Рис. Зондирование опорно-двигательного аппарата для альтернативной сети.

    (a) Коэффициент отклонения значительно коррелирует с гомункулярной топологией (F (1,18) = 8,88, R 2 = 0,33, p = 0,0080), уменьшаясь от медиального (область 0) к латеральному (область 22) регионы.(b) Отклонение оценки воздействия значимо коррелирует с площадью активации моторной полосы (F (1,5) = 23,4, R 2 = 0,82, p = 0,005). Точки данных имеют размер в соответствии с количеством мышц, необходимых для конкретного движения. Данные доступны в DOI: 10.5281 / zenodo.1069104.

    https://doi.org/10.1371/journal.pbio.2002811.s024

    (PNG)

    S9 Рис. Сравнение моделей с весами костей и мышечной силой и без них.

    Влияние мышц ног рассчитывалось с добавлением и без добавления анатомических значений массы кости и объема мышц.Было обнаружено, что эти воздействия значительно коррелировали друг с другом (F (1,25) = 6,83, R 2 = 0,0214, p = 0,015), что позволяет предположить, что по крайней мере в некоторых частях тела наше упрощенное сетевое представление обеспечивает разумное приближение для более биофизически точных сетевых представлений. Данные доступны в DOI: 10.5281 / zenodo.1069104.

    https://doi.org/10.1371/journal.pbio.2002811.s026

    (PNG)

    S11 Рис. Соответствие топологии сети и функции системы.

    Топология сети, а именно средняя длина кратчайшего пути, значительно отрицательно коррелирует с оценкой воздействия, оцененной на основе пертурбативного моделирования динамики системы (F (1,268) = 65,1, R 2 = -0,4422, p <0,0001). Данные доступны в DOI: 10.5281 / zenodo.1069104.

    https://doi.org/10.1371/journal.pbio.2002811.s028

    (PNG)

    S12 Рис. Связь между мышечно-скелетными вариациями и мышечным воздействием на две скелетно-мышечные сети.

    Здесь мы сравниваем процентное изменение оценки и степени воздействия для каждой мышцы между опорно-двигательной сетью, указанной в основном тексте, и сообщенной в дополнительном тексте. Мы наблюдаем, что на оценку удара мышц больше влияют большие изменения степени, чем меньшие изменения степени (F (1,268) = 5,76, R = 0,1450, p = 0,017). Данные доступны в DOI: 10.5281 / zenodo.1069104.

    https://doi.org/10.1371/journal.pbio.2002811.s029

    (PNG)

    S13 Фиг.Альтернативный пертурбативный подход.

    Чтобы установить меру воздействия на гиперреберь мышцы, объекты были перемещены в четвертое пространственное измерение, чтобы избежать произвольного выбора в трех измерениях. Альтернативным подходом было бы возмущение каждой мышцы в каждом из трех ортогональных направлений, каждый раз вычисляя воздействие и вычисляя векторную сумму этих трех результатов. Чтобы ответить на вопрос о том, как эти два подхода сравниваются, мы выполнили этот эксперимент на двудольной матрице мышцы-кость, чтобы создать два вектора 270 × 1, один кодировал оценки воздействия посредством смещения в четвертом измерении, а другой кодировал векторную сумму три ортогональных смещения.Два вектора достоверно коррелировали друг с другом (F (1,268) = 1590, R 2 = 0,856, p <0,0001).

    https://doi.org/10.1371/journal.pbio.2002811.s030

    (PNG)

    Мышечная система — BioFoods

    Мышечная система — это совокупность мышц по всему телу. Мышцы иногда в неожиданных местах выполняют задачи, открывая клапаны в вене для транспортировки крови; для расширения пищевода для облегчения глотания.Есть три типа мышц. Гладкие мышцы, выстилающие кровеносные сосуды и живот (и это лишь некоторые из них). Есть скелетная мышца, которая позволяет движение. Наконец, сердечная мышца. Эта мышца заставляет сердце правильно сокращаться и расширяться.

    Скелетные мышцы

    Продукты, полезные для скелетных мышц:
    • Белки : Продукты, такие как молочные продукты, мясо, птица, яйца и морепродукты, содержат аминокислоты, необходимые для питания организма.Белки, такие как молоко, помогают укрепить кости и мышцы с помощью необходимых питательных веществ, таких как кальций, витамин D, фосфор и калий.

    • Углеводы : Цельнозерновые, молочные продукты, фрукты и овощи также способствуют здоровью костной системы. Они вызывают повышение уровня инсулина в крови, поскольку углеводы перевариваются в глюкозу. Это заставляет питательные вещества (АТФ) переноситься к мышцам по всему телу. Эти питательные вещества дают мышцам возможность быстро и правильно функционировать.

    • Жиры: Ненасыщенные жиры, например омега-3 в рыбьем жире, оливковом масле, арахисовом масле и соевом масле (и это лишь некоторые из них), поддерживают питание клеток. Здоровые жиры предотвращают или уменьшают воспаление и действуют как резервный источник топлива при истощении углеводов.

    Сердечная мышца

    Продукты, полезные для сердечных мышц:

    • Виноград : Содержит множество антиоксидантов.Виноград образует в организме оксид азота, который восстанавливает здоровье сердца.

    • Помидоры : иметь 4 камеры, как сердце. Помидоры резко снижают риск сердечно-сосудистых заболеваний, холестерина и устраняют свободные радикалы, вызывающие старение и рак.

    • Лосось : Содержат жирные кислоты омега-3 для снижения аритмии (нерегулярное сердцебиение) и предотвращения накопления бляшек в артериях. Американская кардиологическая ассоциация рекомендует есть рыбу 2 раза в неделю.

    • Темный шоколад : Доказано, что шоколад с 60-70% какао снижает несмертельные сердечные приступы и инсульт. Компоненты темного шоколада включают флавониоды, называемые полифенолами. Полифенолы снижают кровяное давление, свертываемость и воспаление. Избегайте молочного шоколада и конфет, поскольку они не приносят пользы сердцу.

    Достойны упоминания:

    Цитрусовые, черника, овсянка, соя, картофель, бобовые, авокадо..

    Для получения дополнительной информации посетите: http://www.health.com/health/gallery/0,,20720182,00.html#heart-healthy-foods

    -Назад к началу-

    Скелетные мышцы — анатомия и физиология

    Цели обучения

    К концу этого раздела вы сможете:

    • Описать слои соединительной ткани, упаковывающие скелетную мышцу
    • Объясните, как мышцы работают вместе с сухожилиями для движения тела
    • Определить области волокон скелетных мышц
    • Описание муфты возбуждения-сжатия

    Самая известная особенность скелетных мышц — это их способность сокращаться и вызывать движение.Скелетные мышцы действуют не только для создания движения, но и для остановки движения, например, противодействия силе тяжести для сохранения осанки. Небольшие, постоянные корректировки скелетных мышц необходимы, чтобы удерживать тело в вертикальном или сбалансированном положении в любом положении. Мышцы также предотвращают чрезмерное движение костей и суставов, поддерживая стабильность скелета и предотвращая повреждение или деформацию скелетных структур. Суставы могут полностью смещаться или смещаться из-за натяжения связанных костей; мышцы работают, чтобы суставы оставались стабильными.Скелетные мышцы расположены по всему телу в отверстиях внутренних путей, чтобы контролировать движение различных веществ. Эти мышцы позволяют произвольно контролировать такие функции, как глотание, мочеиспускание и дефекация. Скелетные мышцы также защищают внутренние органы (особенно органы брюшной полости и таза), действуя как внешний барьер или щит от внешних травм и поддерживая вес органов.

    Скелетные мышцы способствуют поддержанию гомеостаза в организме, выделяя тепло.Для сокращения мышц требуется энергия, а при расщеплении АТФ выделяется тепло. Это тепло очень заметно во время упражнений, когда продолжительное движение мышц вызывает повышение температуры тела, а в случаях сильного холода, когда дрожь вызывает случайные сокращения скелетных мышц для выделения тепла.

    Каждая скелетная мышца — это орган, состоящий из различных интегрированных тканей. Эти ткани включают волокна скелетных мышц, кровеносные сосуды, нервные волокна и соединительную ткань. Каждая скелетная мышца состоит из трех слоев соединительной ткани (называемых «мизия»), которые охватывают ее и обеспечивают структуру мышцы в целом, а также разделяют мышечные волокна внутри мышцы ((рисунок)).Каждая мышца обернута оболочкой из плотной соединительной ткани неправильной формы, называемой эпимизием, которая позволяет мышце сокращаться и мощно двигаться, сохраняя при этом свою структурную целостность. Эпимизий также отделяет мышцу от других тканей и органов в этой области, позволяя мышце двигаться независимо.

    Три слоя соединительной ткани

    Пучки мышечных волокон, называемые пучками, покрыты перимизием. Мышечные волокна покрыты эндомизием.

    Внутри каждой скелетной мышцы мышечные волокна организованы в отдельные пучки, каждый из которых называется пучком, с помощью среднего слоя соединительной ткани, называемого перимизием.Эта фасцикулярная организация часто встречается в мышцах конечностей; он позволяет нервной системе запускать определенное движение мышцы, активируя подмножество мышечных волокон в пучке или пучке мышцы. Внутри каждого пучка каждое мышечное волокно заключено в тонкий слой соединительной ткани из коллагена и ретикулярных волокон, называемый эндомизием. Эндомизий содержит внеклеточную жидкость и питательные вещества, поддерживающие мышечные волокна. Эти питательные вещества поступают в мышечную ткань через кровь.

    В скелетных мышцах, которые работают с сухожилиями, натягивая кости, коллаген в трех тканевых слоях (мизия) переплетается с коллагеном сухожилия. На другом конце сухожилия оно срастается с надкостницей, покрывающей кость. Напряжение, создаваемое сокращением мышечных волокон, затем передается через мезию к сухожилию, а затем к надкостнице, чтобы тянуть кость для движения скелета. В других местах мезия может сливаться с широким, похожим на сухожилие листом, называемым апоневрозом, или с фасцией, соединительной тканью между кожей и костями.Широкий слой соединительной ткани в нижней части спины, в который сливаются широчайшие мышцы спины («широчайшие»), является примером апоневроза.

    Каждая скелетная мышца также богато снабжена кровеносными сосудами для питания, доставки кислорода и удаления шлаков. Кроме того, каждое мышечное волокно в скелетной мышце снабжается аксонной ветвью соматического двигательного нейрона, которая сигнализирует волокну о сокращении. В отличие от сердечных и гладких мышц, единственный способ функционального сокращения скелетных мышц — это передача сигналов от нервной системы.

    Волокна скелетных мышц

    Поскольку клетки скелетных мышц длинные и цилиндрические, их обычно называют мышечными волокнами. Волокна скелетных мышц могут быть довольно большими для клеток человека: диаметром до 100 мкм, м и длиной до 30 см (11,8 дюйма) в портняжной мышце верхней части ноги. На раннем этапе развития эмбриональные миобласты, каждый со своим собственным ядром, сливаются с сотнями других миобластов, образуя многоядерные волокна скелетных мышц. Множественные ядра означают множественные копии генов, позволяющие производить большое количество белков и ферментов, необходимых для сокращения мышц.

    Другая терминология, связанная с мышечными волокнами, восходит к греческому sarco , что означает «плоть». Плазматическая мембрана мышечных волокон называется сарколеммой, цитоплазма называется саркоплазмой, а специальный гладкий эндоплазматический ретикулум, который хранит, высвобождает и извлекает ионы кальция (Ca ++ ), называется саркоплазматическим ретикулумом (SR). ((Фигура)). Как будет описано ниже, функциональной единицей волокна скелетных мышц является саркомер, высокоорганизованная структура сократительных миофиламентов актина (тонкая нить) и миозина (толстая нить), а также других поддерживающих белков.

    Мышечное волокно

    Волокно скелетных мышц окружено плазматической мембраной, называемой сарколеммой, которая содержит саркоплазму, цитоплазму мышечных клеток. Мышечное волокно состоит из множества фибрилл, которые придают клетке полосатый вид.

    Саркомер

    Поперечно-полосатый вид волокон скелетных мышц обусловлен расположением миофиламентов актина и миозина в последовательном порядке от одного конца мышечного волокна до другого.Каждый пакет этих микрофиламентов и их регуляторных белков, тропонина и тропомиозина (наряду с другими белками) называется саркомером.

    Посмотрите это видео, чтобы узнать больше о макро- и микроструктуре скелетных мышц. а) Как называются «точки соединения» между саркомерами? (б) Как называются «субъединицы» в миофибриллах, которые проходят по длине волокон скелетных мышц? в) Что такое «двойная нить жемчуга», описанная в видео? (d) Что придает скелетным мышечным волокнам поперечно-полосатый вид?

    Саркомер — функциональная единица мышечного волокна.Сам саркомер связан с миофибриллами, которые проходят по всей длине мышечного волокна и прикрепляются к сарколемме на своем конце. По мере сокращения миофибрилл сокращается вся мышечная клетка. Поскольку миофибриллы имеют диаметр примерно 1,2 мкм м, внутри одного мышечного волокна можно найти от сотен до тысяч (каждая с тысячами саркомеров). Каждый саркомер имеет длину примерно 2 мкм м с трехмерным цилиндрическим расположением и ограничен структурами, называемыми Z-дисками (также называемыми Z-линиями, потому что изображения двумерные), к которым прикреплены миофиламенты актина. на якоре ((рисунок)).Поскольку актин и его комплекс тропонин-тропомиозин (выступающий от Z-дисков к центру саркомера) образуют нити, которые тоньше миозина, его называют тонкой нитью саркомера. Точно так же, поскольку нити миозина и их многочисленные головки (выступающие из центра саркомера к Z-дискам, но не полностью к ним) имеют большую массу и толще, их называют толстой нитью саркомера.

    Саркомер

    Саркомер, область от одной Z-линии до следующей Z-линии, является функциональной единицей волокна скелетных мышц.

    Нервно-мышечное соединение

    Другая специализация скелетных мышц — это место, где терминал двигательного нейрона встречается с мышечным волокном, называемое нервно-мышечным соединением (НМС). Здесь мышечное волокно в первую очередь реагирует на сигналы двигательного нейрона. Каждое волокно скелетных мышц в каждой скелетной мышце иннервируется двигательным нейроном в НМС. Сигналы возбуждения от нейрона — единственный способ функционально активировать сокращение волокна.

    Каждое волокно скелетных мышц снабжается двигательным нейроном в СМС. Посмотрите это видео, чтобы узнать больше о том, что происходит в СМП. а) Что означает моторная единица? б) Каковы структурные и функциональные различия между большой моторной единицей и малой моторной единицей? (c) Вы можете привести пример каждого из них? (d) Почему нейромедиатор ацетилхолин разлагается после связывания с его рецептором?

    Муфта возбуждения-сжатия

    Все живые клетки имеют мембранные потенциалы или электрические градиенты на мембранах.Внутренняя часть мембраны обычно составляет от -60 до -90 мВ относительно внешней стороны. Это называется мембранным потенциалом клетки. Нейроны и мышечные клетки могут использовать свои мембранные потенциалы для генерации электрических сигналов. Они делают это, контролируя движение заряженных частиц, называемых ионами, через свои мембраны для создания электрических токов. Это достигается за счет открытия и закрытия специализированных белков в мембране, называемых ионными каналами. Хотя токи, генерируемые ионами, движущимися через эти канальные белки, очень малы, они составляют основу как нейронной передачи сигналов, так и сокращения мышц.

    И нейроны, и клетки скелетных мышц электрически возбудимы, что означает, что они способны генерировать потенциалы действия. Потенциал действия — это особый тип электрического сигнала, который может перемещаться по клеточной мембране в виде волны. Это позволяет быстро и точно передавать сигнал на большие расстояния.

    Хотя термин «связь возбуждения-сокращения» сбивает с толку или пугает некоторых студентов, он сводится к следующему: для сокращения волокна скелетной мышцы его мембрана должна сначала быть «возбуждена» — другими словами, ее нужно стимулировать, чтобы запустить потенциал действия. .Потенциал действия мышечных волокон, который движется по сарколемме в виде волны, «связан» с фактическим сокращением через высвобождение ионов кальция (Ca ++ ) из SR. После высвобождения Ca ++ взаимодействует с защитными белками, заставляя их отодвигаться в сторону, так что сайты связывания актина становятся доступными для прикрепления миозиновыми головками. Затем миозин тянет актиновые нити к центру, укорачивая мышечные волокна.

    В скелетных мышцах эта последовательность начинается с сигналов соматического моторного отдела нервной системы.Другими словами, этап «возбуждения» в скелетных мышцах всегда запускается сигналом нервной системы ((рисунок)).

    Концевая пластина двигателя и иннервация

    В СМП терминал аксона высвобождает ACh. Моторная пластинка — это место расположения ACh-рецепторов в сарколемме мышечного волокна. Когда молекулы ACh высвобождаются, они диффундируют через небольшое пространство, называемое синаптической щелью, и связываются с рецепторами.

    Моторные нейроны, которые заставляют волокна скелетных мышц сокращаться, берут начало в спинном мозге, а меньшее их количество находится в стволе мозга для активации скелетных мышц лица, головы и шеи.Эти нейроны имеют длинные отростки, называемые аксонами, которые специализируются на передаче потенциалов действия на большие расстояния — в данном случае от спинного мозга до самой мышцы (которая может находиться на расстоянии до трех футов). Аксоны нескольких нейронов связываются вместе, образуя нервы, как провода, связанные вместе в кабель.

    Передача сигналов начинается, когда потенциал действия нейрона проходит по аксону двигательного нейрона, а затем по отдельным ветвям и заканчивается в НМС. В NMJ окончание аксона высвобождает химический мессенджер или нейромедиатор, называемый ацетилхолином (ACh).Молекулы ACh диффундируют через небольшое пространство, называемое синаптической щелью, и связываются с рецепторами ACh, расположенными внутри моторной концевой пластинки сарколеммы на другой стороне синапса. После связывания ACh канал в рецепторе ACh открывается, и положительно заряженные ионы могут проходить в мышечное волокно, вызывая его деполяризацию, а это означает, что мембранный потенциал мышечного волокна становится менее отрицательным (ближе к нулю).

    По мере того, как мембрана деполяризуется, запускается другой набор ионных каналов, называемых потенциалозависимыми натриевыми каналами.Ионы натрия попадают в мышечные волокна, и потенциал действия быстро распространяется (или «вспыхивает») по всей мембране, инициируя взаимодействие возбуждения и сокращения.

    В мире возбудимых мембран все происходит очень быстро (только подумайте, как быстро вы сможете щелкнуть пальцами, как только решите это сделать). Сразу после деполяризации мембраны она реполяризуется, восстанавливая отрицательный мембранный потенциал. Между тем, ACh в синаптической щели расщепляется ферментом ацетилхолинэстеразой (AChE), так что ACh не может повторно связываться с рецептором и повторно открывать свой канал, что может вызвать нежелательное расширенное возбуждение и сокращение мышц.

    Распространение потенциала действия по сарколемме является возбуждающей частью связи возбуждения-сокращения. Напомним, что это возбуждение фактически запускает высвобождение ионов кальция (Ca ++ ) из их хранилища в SR клетки. Чтобы потенциал действия достиг мембраны SR, в сарколемме есть периодические инвагинации, называемые Т-канальцами («Т» означает «поперечный»). Вы помните, что диаметр мышечного волокна может достигать 100 мкм м, поэтому эти Т-канальцы гарантируют, что мембрана может приблизиться к SR в саркоплазме.Расположение Т-канальца с мембранами SR по обеим сторонам называется триадой ((рисунок)). Триада окружает цилиндрическую структуру, называемую миофибриллой, которая содержит актин и миозин.

    Трубочка

    Узкие Т-канальцы позволяют проводить электрические импульсы. Функции SR регулируют внутриклеточные уровни кальция. Две терминальные цистерны (где увеличенный SR соединяется с Т-канальцем) и один Т-канальец составляют триаду — «тройку» мембран с мембранами SR с двух сторон и Т-канальцем, зажатым между ними.

    Т-канальцы несут потенциал действия внутрь клетки, что запускает открытие кальциевых каналов в мембране соседнего SR, заставляя Ca ++ диффундировать из SR в саркоплазму. Именно поступление Ca ++ в саркоплазму инициирует сокращение мышечного волокна его сократительными единицами, или саркомерами.

    Обзор главы

    Скелетные мышцы содержат соединительную ткань, кровеносные сосуды и нервы.Существует три слоя соединительной ткани: эпимизий, перимизий и эндомизий. Волокна скелетных мышц организованы в группы, называемые пучками. Кровеносные сосуды и нервы входят в соединительную ткань и разветвляются в клетке. Мышцы прикрепляются к костям напрямую или через сухожилия или апоневрозы. Скелетные мышцы поддерживают осанку, стабилизируют кости и суставы, контролируют внутренние движения и выделяют тепло.

    Волокна скелетных мышц представляют собой длинные многоядерные клетки. Мембрана клетки — это сарколемма; цитоплазма клетки — саркоплазма.Саркоплазматический ретикулум (SR) — это форма эндоплазматического ретикулума. Мышечные волокна состоят из миофибрилл. Строчки создаются организацией актина и миозина, в результате чего образуются полосы миофибрилл.

    Вопросы по интерактивной ссылке

    Посмотрите это видео, чтобы узнать больше о макро- и микроструктуре скелетных мышц. а) Как называются «точки соединения» между саркомерами? (б) Как называются «субъединицы» в миофибриллах, которые проходят по длине волокон скелетных мышц? в) Что такое «двойная нить жемчуга», описанная в видео? (d) Что придает скелетным мышечным волокнам поперечно-полосатый вид?

    (а) Z-линии.(б) Саркомеры. (c) Это расположение актиновых и миозиновых нитей в саркомере. (d) Чередующиеся нити актиновых и миозиновых филаментов.

    Каждое волокно скелетных мышц снабжается двигательным нейроном в СМС. Посмотрите это видео, чтобы узнать больше о том, что происходит в нервно-мышечном соединении. а) Что означает моторная единица? б) Каковы структурные и функциональные различия между большой моторной единицей и малой моторной единицей? Вы можете привести пример каждого из них? (c) Почему нейромедиатор ацетилхолин разлагается после связывания с его рецептором?

    (а) Это количество волокон скелетных мышц, снабжаемых одним двигательным нейроном.(б) У большой двигательной единицы есть один нейрон, снабжающий множество волокон скелетных мышц для грубых движений, как, например, мышца височной мышцы, где 1000 волокон обеспечивается одним нейроном. У маленького мотора есть один нейрон, снабжающий несколько волокон скелетных мышц для очень тонких движений, например, экстраокулярные мышцы глаза, где шесть волокон снабжены одним нейроном. (c) Чтобы избежать продления мышечного сокращения.

    Обзорные вопросы

    Правильный порядок от наименьшей к наибольшей единице организации в мышечной ткани — ________.

    1. пучок, нить, мышечное волокно, миофибрилла
    2. филамент, миофибрилла, мышечное волокно, пучок
    3. мышечное волокно, пучок, нить, миофибрилла
    4. миофибрилла, мышечное волокно, нить, пучок

    Деполяризация сарколеммы означает ________.

    1. внутренняя часть мембраны стала менее отрицательной по мере накопления ионов натрия
    2. Наружная часть мембраны стала менее отрицательной по мере накопления ионов натрия
    3. внутренняя часть мембраны стала более отрицательной по мере накопления ионов натрия
    4. сарколемма полностью потеряла электрический заряд

    Вопросы критического мышления

    Что случилось бы со скелетными мышцами, если бы эпимизий был разрушен?

    Мышцы теряют свою целостность при сильных движениях, что приводит к их повреждению.

    Опишите, как сухожилия способствуют движению тела.

    Когда мышца сокращается, сила движения передается через сухожилие, которое тянет кость, вызывая движение скелета.

    Каковы пять основных функций скелетных мышц?

    Обеспечивает движение скелета, поддерживает осанку и положение тела, поддерживает мягкие ткани, окружает отверстия пищеварительного, мочевыводящего и других трактов и поддерживает температуру тела.

    Каковы противоположные роли потенциалозависимых натриевых каналов и потенциалозависимых калиевых каналов?

    Открытие потенциалзависимых натриевых каналов, за которым следует приток Na + , передает потенциал действия после того, как мембрана достаточно деполяризовалась.Задержка открытия калиевых каналов позволяет K + выйти из клетки, чтобы реполяризовать мембрану.

    Глоссарий

    ацетилхолин (АЧ)
    нейротрансмиттер, который связывается с моторной концевой пластиной, чтобы вызвать деполяризацию
    актин
    белок, который составляет большинство тонких миофиламентов в мышечном волокне саркомера
    потенциал действия
    изменение напряжения клеточной мембраны в ответ на стимул, приводящий к передаче электрического сигнала; уникально для нейронов и мышечных волокон
    апоневроз
    широкий, подобный сухожилию лист соединительной ткани, который прикрепляет скелетную мышцу к другой скелетной мышце или к кости
    деполяризация
    для уменьшения разницы в напряжении между внутренней и внешней частью плазматической мембраны клетки (сарколемма мышечного волокна), делая внутреннюю часть менее отрицательной, чем в состоянии покоя
    эндомизий
    рыхлая и хорошо гидратированная соединительная ткань, покрывающая каждое мышечное волокно скелетной мышцы
    эпимизий
    Наружный слой соединительной ткани вокруг скелетной мышцы
    муфта возбуждения-сжатия
    последовательность событий от передачи сигналов двигательного нейрона к волокну скелетных мышц до сокращения саркомеров волокна
    пучок
    пучок мышечных волокон в скелетной мышце
    Концевая пластина двигателя
    сарколемма мышечного волокна в нервно-мышечном соединении с рецепторами нейромедиатора ацетилхолина
    миофибрилла
    длинная цилиндрическая органелла, которая проходит параллельно внутри мышечного волокна и содержит саркомеры
    миозин
    белок, который составляет большую часть толстой цилиндрической миофиламента в мышечном волокне саркомера
    нервно-мышечное соединение (НМС)
    синапс между концом аксона моторного нейрона и участком мембраны мышечного волокна с рецепторами ацетилхолина, высвобождаемого концом
    нейромедиатор
    сигнальное химическое вещество, высвобождаемое нервными окончаниями, которые связываются с рецепторами на клетках-мишенях и активируют их
    перимизий
    Соединительная ткань, связывающая волокна скелетных мышц в пучки внутри скелетных мышц
    саркомер
    в продольном направлении, повторяющаяся функциональная единица скелетных мышц, со всеми сократительными и связанными белками, участвующими в сокращении
    сарколемма
    плазматическая мембрана волокна скелетной мышцы
    саркоплазма
    цитоплазма мышечной клетки
    саркоплазматический ретикулум (SR)
    специализированный гладкий эндоплазматический ретикулум, который хранит, высвобождает и извлекает Ca ++
    синаптическая щель
    пространство между нервным окончанием (аксоном) и концевой пластиной мотора
    Трубочка
    Проекция сарколеммы внутрь камеры
    толстая нить
    толстые тяжи миозина и их многочисленные головки, выступающие из центра саркомера к Z-дискам, но не полностью к ним.
    тонкая нить
    тонких нити актина и его комплекса тропонин-тропомиозин, выступающих от Z-дисков к центру саркомера
    триада
    группа из одного Т-канальца и двух терминальных цистерн
    тропонин
    регуляторный белок, связывающийся с актином, тропомиозином и кальцием
    тропомиозин
    регуляторный белок, который покрывает миозин-связывающие сайты, чтобы предотвратить связывание актина с миозином
    натриевые каналы, управляемые напряжением
    мембранных белков, которые открывают натриевые каналы в ответ на достаточное изменение напряжения и инициируют и передают потенциал действия, когда Na + входит через канал

    Мышечная система — определение, функции и части

    Определение

    Мышечная система — это совокупность тканей тела, способных изменять форму.Мышечные клетки соединяются вместе и в конечном итоге с элементами скелетной системы. Когда мышечные клетки сокращаются, создается сила, когда мышцы тянутся к скелету.

    Обзор

    Актин и миозин — основные белки, которые используются в мышечных клетках для сокращения. На изображении ниже актин показан зеленым цветом, а миозин — фиолетовым. Эти два компонента используют АТФ, чтобы притягивать друг друга. Они прикрепляются к каждой стороне ячейки, что укорачивает ячейку, когда они проходят друг мимо друга.

    Как видно на рисунке ниже, мышечная система сокращается, когда энергия АТФ применяется к миозиновым головкам миозинового белкового филамента. Голова выпускает актин, тянется вперед и снова захватывает актин. Это перемещает белковые волокна и сокращает волокна. В зависимости от мышечной клетки могут использоваться разные формы актина и миозина. В некоторых организмах используются совершенно разные белки.

    Сокращение скелетных мышц

    Мышечная система основана на скоординированном действии миллионов актиновых и миозиновых нитей, тянущихся в одном направлении в одно и то же время.Для достижения этой координации мышцы иннервируются нервной системой. Нервные сигналы, исходящие из мозга, направляются к определенным мышцам, позволяя организмам стимулировать определенные мышечные ткани для выполнения скоординированных действий, таких как бег, плавание и полет.

    Функция мышечной системы

    Движение

    Самая очевидная функция мышечной системы — это движение. Организмы применили множество методов, чтобы использовать сократительную функцию мышечной системы для передвижения в окружающей среде.Самые основные движения рыбы включают последовательное сокращение мышц на противоположных сторонах тела. Это действие продвигает их по воде.

    У организмов с конечностями, сухожилия и другие соединительные ткани используются для прикрепления мышц к суставам и скелету. Скелеты могут быть внутренними, как человеческие скелеты, или они могут быть внешними, как экзоскелет крабов. Нервная система координирует сокращение мышечной системы, чтобы синхронизировать движения конечностей.Такие животные, как гепард, рыба-меч и летучая мышь, развивают скорость выше 60 миль в час или более только благодаря силе своих мускулов.

    Кровообращение

    Вторая и менее очевидная функция мышечной системы — способствовать кровообращению. Ткани висцеральных и сердечных мышц окружают кровеносные и лимфатические сосуды, которые несут важные питательные вещества и кислород к клеткам тела. Сердечная мышца составляет сердце и обеспечивает основную силу для крови, перемещающейся по телу.

    Крупные артерии и вены связаны с мышцами, которые могут сокращаться или расслабляться, чтобы контролировать кровяное давление. Действия крупных скелетных мышц также помогают перекачивать кровь и лимфатическую жидкость по всему телу. Когда вы тренируетесь и сокращаете большие и маленькие мышцы, они отталкивают сосуды в сторону, что работает как насос, перемещая жидкости по вашему телу.

    Пищеварение

    Подобно своей способности перемещать жидкости по сосудам в системе кровообращения, мышечная система также помогает перемещать пищу через пищеварительную систему.Большинство органов пищеварения окружены гладкой мышечной тканью. Хотя ткань не может быть сокращена добровольно, как скелетные мышцы, она контролируется подсознательно. Когда пища должна перемещаться по кишечнику, мышцы сокращаются синхронно, волнообразно через пищеварительную систему. Эти волнообразные мышечные сокращения называются перистальтикой .

    Части мышечной системы

    В отличие от других систем органов, мышечная система делится на разные типы тканей, которые входят в состав различных органов тела.

    Схема мышечной системы

    Скелетная мышца

    Поперечно-полосатая мышца или Скелетная мышца, — ткань, наиболее часто связанная с мышечной системой. Этот тип мышц прикрепляется к скелету и перемещает конечности и тело организма. Системы скелетных мышц состоят из поперечно-полосатых мышц , которые имеют отдельные полосы белков в каждой миофибрилле . Когда этим белкам дается энергия, они скользят друг мимо друга, стягивая концы каждой мышечной клетки вместе.Саркомеры , или функциональные единицы актина и миозина, образуют полосатость, которую можно увидеть в поперечнополосатых мышцах. Это можно увидеть на изображении ниже.

    Скелетная мышца

    Висцеральная мышца

    Напротив, висцеральные мышечные клетки не содержат этих резких полос белка, а актиновые и миозиновые волокна работают по-разному. Вместо толстых волокон, проходящих через клетку, висцеральная мышца окружена сеткой из актиновых и миозиновых волокон, которые сжимают клетку при сокращении.Это можно увидеть на изображении ниже. По этой причине висцеральная мышца также известна как гладкая мышца .

    Сокращение гладких мышц

    Сердечная мышца

    Сердечная мышца, , которая окружает камеры сердца, полосатая, как скелетная мышца, но клетки соединены с соседними клетками, что создает больше сократительного движения для перекачивания крови.

    Структура мышечной системы

    В целом мышечная система имеет базовую структуру, которая позволяет мышцам двигать конечностями и создавать силу.Мышца всегда расположена между двумя костями и связана с костями посредством сухожилий, которые представляют собой волокнистые и гибкие ткани, которые могут прикрепляться к костям. Действие укорачивания каждой отдельной клетки приводит к сокращению мышцы в целом. Это натягивает сухожилия с каждой стороны мышцы, создавая нагрузку на кости. Кости, если они соединены в сустав, могут двигаться в ответ на эту силу.

    Некоторые кости неподвижны, что позволяет мышцам натягиваться на них. Так обстоит дело с такими мышцами, как диафрагма, которая связана с двумя неподвижными костями.Когда диафрагма сжимается, она вытесняет воздух из грудной полости, потому что вся сила направлена ​​вверх.

    Вместе, множество различных типов и соединений мышц функционируют, чтобы дать вашему телу полный диапазон движений. Таким образом, многие мышцы пересекаются друг с другом или находятся на противоположных сторонах кости, чтобы перемещать ее в разных направлениях.

    Связь мышечной системы с нервной системой

    Скелетная мышца связана в основном с соматической нервной системой , которая контролируется произвольными импульсами мозга.С другой стороны, сердечные и висцеральные мышцы контролируются в основном вегетативной нервной системой , которая контролирует подсознательные действия организма. Разделение этих нервных систем гарантирует, что вегетативные функции, такие как дыхание и пищеварение, продолжаются, пока животное движется и ищет больше пищи.

    Различия в тканях мышечной системы связаны с их очень разным использованием. Скелетные мышцы должны быстро выполнять большой объем работы, поэтому они состоят из поперечно-полосатых мышечных клеток, которые могут произвольно сокращаться.Гладкая мышечная ткань висцеральных тканей имеет меньше митохондрий, производящих энергию. Эти ткани просто используются для сокращения полых органов и перемещения жидкости внутрь. Желудок, кишечник и кровеносные сосуды выстланы висцеральными мышцами. Сердечная мышца имеет поперечно-полосатую форму, потому что ей необходимо создавать большую силу, хотя она не контролируется добровольно.

    Заболевания мышечной системы

    Заболевания мышечной системы подразделяются на множество категорий. Могут произойти простые травмы мышечной системы, например, разрыв мышцы или растяжение лодыжки.Такие заболевания, как тендинит, могут возникнуть при неоднократном растяжении сухожилия. Однако есть несколько мышечных заболеваний, не вызванных напряжением или повреждением реальных мышечных клеток.

    Мышечная дистрофия — это генетическое заболевание, поражающее мышечную систему. Начиная с 2-6 лет заболевание приводит к стойкому ослаблению мышц по всей анатомии. Это продолжается до конца жизни больного человека. Как правило, люди с мышечной дистрофией доживают до позднего подросткового возраста или до двадцати пяти лет.

    Волчанка — еще одно заболевание, поражающее мышечную систему. Симптомы волчанки включают сыпь в форме бабочки на лице, а также отек и воспаление кожи, мышц и суставов. Волчанка — это аутоиммунное заболевание, то есть причина заболевания — иммунные клетки в вашем теле, вырабатывающие антитела против собственных белков вашего тела.

    Викторина

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *