Содержание

Масса сплошной детали | Математика для ювелиров

9.05.2013 // Владимир Трунов   

Это странное название статьи объясняется только тем, что детали одной и той же формы могут быть как сплошными, так и полыми (т.е. следующая статья будет называться «Масса полой детали»).

Тут самое время вспомнить, что масса тела — это его объем , умноженный на плотность его материала (см. таблицы плотностей):

Объем сплошной детали — это… ее объем и больше ничего.

Примечание. В приведенных ниже формулах все размеры измеряются в миллиметрах, а плотность — в граммах на кубический сантиметр.
Буквой обозначено отношение длины окружности к ее диаметру, составляющее примерно 3,14.

Рассмотрим несколько простых форм (более сложные, как вы помните, можно составить путем сложения или вычитания простых).


1. Масса параллелепипеда (бруска)

Объем параллелепипеда: , где — длина, — ширина, — высота.
Тогда масса:


2. Масса цилиндра

Объем цилиндра: , где — диаметр основания, — высота цилиндра.

Тогда масса:


3. Масса шара

Объем шара: , где — диаметр шара.
Тогда масса:


4. Масса сегмента шара

Объем сегмента шара: , где — диаметр основания сегмента, — высота сегмента.
Тогда масса:


5. Масса конуса

Объем любого конуса: , где — площадь основания, — высота конуса.
Для круглого конуса: , где — диаметр основания, — высота конуса.
Масса круглого конуса:


6. Масса усеченного конуса

Поскольку невозможно объять необъятное, рассмотрим только круглый усеченный конус. Его объем — это разность объемов двух вложенных конусов: с основаниями и : , где , . После никому не интересных алгебраических преобразований получаем:
, где — диаметр большего основания, — диаметр меньшего основания, — высота усеченного конуса.
Отсюда масса:


7. Масса пирамиды

Объем любой пирамиды равен одной трети произведения площади ее основания на высоту (то же самое, что и для конусов (часто мы не замечаем, насколько мироздание к нам благосклонно)): , где — площадь основания, — высота пирамиды.

Для пирамиды с прямоугольным основанием: , где — ширина, — длина, — высота пирамиды.
Тогда масса пирамиды:


8. Масса усеченной пирамиды

Рассмотрим усеченную пирамиду с прямоугольным основанием. Ее объем — это разность объемов двух подобных пирамид с основаниями и : , где , .
Исчеркав половину тетрадного листа, получаем: , где , — ширина и длина большего основания, , — ширина и длина меньшего основания, — высота пирамиды.
И, оставив в покое остальную половину листа, исходя из одних соображений симметрии, мы можем написать еще одну формулу, которая отличается от предыдущей только заменой W на L и наоборот. В чем разница между длиной и шириной? Только в том, что мы их так назвали. Назовем наоборот и получим: .
Тогда масса усеченной прямоугольной пирамиды:

или

Для пирамиды с квадратным основанием (, ) формула выглядит проще:


tvlad.ru

Расчет массы цилиндра — однородного и полого

Цилиндр является одной из простых объемных фигур, которую изучают в школьном курсе геометрии (раздел стереометрия). При этом часто возникают задачи на расчет объема и массы цилиндра, а также на определение площади его поверхности. Ответы на отмеченные вопросы даны в этой статье.

Что такое цилиндр?

Перед тем как переходить к ответу на вопрос, чему равна масса цилиндра и его объем, стоит рассмотреть, что представляет собой эта пространственная фигура. Сразу необходимо отметить, что цилиндр — это трехмерный объект. То есть в пространстве можно измерить три его параметра по каждой из осей в декартовой прямоугольной системе координат. В действительности для однозначного определения размеров цилиндра достаточно знать всего два его параметра.

Цилиндр — это объемная фигура, образованная двумя кругами и цилиндрической поверхностью. Чтобы яснее представить этот объект, достаточно взять прямоугольник и начать вращать его вокруг какой-либо его стороны, которая будет осью вращения. В этом случае вращающийся прямоугольник опишет фигуру вращения — цилиндр.

Две круглые поверхности называются основаниями цилиндра, они характеризуются определенным радиусом. Расстояние между основаниями называется высотой. Два основания соединены между собой цилиндрической поверхностью. Линия, проходящая через центры обоих кругов, называется осью цилиндра.

Объем и площадь поверхности

Как можно заметить из вышесказанного, цилиндр определяется двумя параметрами: высотой h и радиусом его основания r. Зная эти параметры, можно рассчитать все другие характеристики рассматриваемого тела. Ниже приводятся основные из них:

  • Площадь оснований. Эта величина рассчитывается по формуле: S1 = 2*pi*r2, где pi — число пи, равное 3,14. Цифра 2 в формуле появляется потому, что цилиндр имеет два одинаковых основания.
  • Площадь цилиндрической поверхности. Ее можно рассчитать так: S2 = 2*pi*r*h. Понять эту формулу просто: если цилиндрическую поверхность разрезать вертикально от одного основания к другому и развернуть, то получится прямоугольник, высота которого будет равна высоте цилиндра, а ширина будет соответствовать длине окружности основания объемной фигуры. Поскольку площадь полученного прямоугольника — это произведение его сторон, которые равны h и 2*pi*r, то получается представленная выше формула.
  • Площадь поверхности цилиндра. Она равна сумме площадей S1 и S2, получаем: S3 = S1 + S2 = 2*pi*r2 + 2*pi*r*h = 2*pi*r*(r+h).
  • Объем. Эта величина находится просто, необходимо лишь умножить площадь одного основания на высоту фигуры: V = (S1/2)*h = pi*r2*h.

Определение массы цилиндра

Наконец, стоит перейти непосредственно к теме статьи. Как определить массу цилиндра? Для этого необходимо знать его объем, формула для вычисления которого была представлена выше. И плотность вещества, из которого он состоит. Масса определяется по простой формуле: m = ρ*V, где ρ — плотность материала, образующего рассматриваемый объект.

Понятие плотности характеризует массу вещества, которое находится в единице объема пространства. Например. Известно, что железо имеет большую плотность, чем дерево. Это означает, что в случае одинаковых объемов вещества железа и дерева первое будет иметь намного большую массу, чем второе (приблизительно в 16 раз).

Расчет массы медного цилиндра

Рассмотрим простую задачу. Необходимо найти массу цилиндра, сделанного из меди. Для определенности пусть цилиндр имеет диаметр 20 см и высоту 10 см.

Перед тем как приступать к решению задачи, следует разобраться с исходными данными. Радиус цилиндра равен половине его диаметра, значит r = 20/2 = 10 см, высота же составляет h = 10 см. Поскольку рассматриваемый в задаче цилиндр сделан из меди, то, обращаясь к справочным данным, выписываем значение плотности этого материала: ρ = 8,96 г/см3 (для температуры 20 °C).

Теперь можно приступать к решению задачи. Для начала рассчитаем объем: V =pi*r2*h = 3,14*(10)2*10 = 3140 см3. Тогда масса цилиндра будет равна: m = ρ*V = 8,96 * 3140 = 28134 грамм или приблизительно 28 килограмм.

Следует обратить внимание на размерность единиц во время их использования в соответствующих формулах. Так, в задаче все параметры были представлены в сантиметрах и граммах.

Однородный и полый цилиндры

Из полученного выше результата можно видеть, что медный цилиндр с относительно малыми размерами (10 см) обладает большой массой (28 кг). Это связано не только с тем, что он сделан из тяжелого материала, но и с тем, что он является однородным. Этот факт важно понимать, поскольку приведенную выше формулу для расчета массы можно использовать только в случае, если цилиндр полностью (снаружи и внутри) состоит из одного и того же материала, то есть является однородным.

На практике же часто используют полые цилиндры (например, цилиндрические бочки для воды). То есть они сделаны из тонких листов какого-то материала, а внутри являются пустыми. Для полого цилиндра указанной формулой расчета массы пользоваться нельзя.

Интересно рассчитать, какой массой будет обладать цилиндр из меди, если он является пустым внутри. Для примера пусть он будет сделан из тонкого медного листа толщиной всего d = 2 мм.

Чтобы решить эту задачу, нужно найти объем самой меди, из которой сделан объект. А не объем цилиндра. Поскольку толщина листа мала, по сравнению с размерами цилиндра (d = 2 мм и r = 10 см), тогда объем меди, из которой изготовлен предмет, можно найти, если умножить всю площадь поверхности цилиндра на толщину медного листа, получаем: V = d*S3 = d*2*pi*r*(r+h). Подставляя данные из предыдущей задачи, получим: V = 0,2*2*3,14*10*(10+10) = 251,2 см3. Массу полого цилиндра можно получить, если умножить полученный объем меди, который потребовался для его изготовления, на плотность меди: m = 251,2 * 8,96 = 2251 г или 2,3 кг. То есть рассмотренный полый цилиндр весит в 12 (28,1/2,3) раз меньше, чем однородный.

fb.ru

Как рассчитать вес металла — формулы и рекомендации. Расчет массы круга стального формула

Калькулятор массы

Плотность  материалов
Наименование Плотностьρ, кг/м3
Черные металлы
Сталь 10 ГОСТ 1050-88 7856
Сталь 20 ГОСТ 1050-88 7859
Сталь 40 ГОСТ 1050-88 7850
Сталь 60 ГОСТ 1050-88 7800
С235-С375 ГОСТ 27772-88 7850
Ст3пс ГОСТ 380-2005 7850
Чугун ковкий КЧ 70-2 ГОСТ 1215-79 7000
Чугун высокопрочный ВЧ35 ГОСТ 7293-85 7200
Чугун серый СЧ10 ГОСТ 1412-85 6800
Чугун серый СЧ20 ГОСТ 1412-85 7100
Чугун серый СЧ30 ГОСТ 1412-85 7300
Алюминий и сплавы алюминиевые
Силумин АК12ж ГОСТ 1583-93 2700
Сплав АК12 ГОСТ 1583-93 2710
Сплав АК5М ГОСТ 1583-93 2640
Сплав АК7 ГОСТ 1583-93 2700
Сплав АО9-1 ГОСТ 14113-78 2700
Магний и сплавы магниевые
Сплав ВМЛ9 1850
Сплав ВМЛ5 1890
Сплав МЛ10…МЛ19 ГОСТ 2856-79 1810
Баббиты оловянные и свинцовые
Б83 ГОСТ 1320-747380
Б87 ГОСТ 1320-74 7300
БН ГОСТ 1320-74 9550
Медь и медные сплавы
Бронза оловянная БрО10C10 8800
Бронза оловянная БрО19 8600
Бронза оловянная БрОC10-10 9100
Бронза оловянная БрОA10-1 8750
Бронза БрА10Ж3Мч2 ГОСТ 493-79 8200
Бронза БрА9Ж3Л ГОСТ 493-79 8200
Бронза БрМц5 ГОСТ 18175-78 8600
Латунь Л60 ГОСТ 15527-2004 8800
Латунь ЛА ГОСТ 1020-97 8500

pellete.ru

Расчет плотности тела и формулы расчета массы и объема тела по плотности

Оглавление:

  1. Какие факторы влияют на плотность тела?
  2. Как рассчитать плотность тела?
  3. Расчет массы тела и объёма по плотности
  4. Плотность воды
  5. Метод вытеснения жидкости

Окружающий мир состоит из множества различных веществ. Так, например, лавочка в парке или баня за городом сделаны из дерева, платформа утюга и сковорода сделаны из металла, покрышка на колесе и ластик на карандаше сделаны из резины. Различные предметы имеют различный вес — любой человек без труда донесёт с рынка сочный спелый арбуз, а вот гирю такого же размера вряд ли удастся оторвать от земли.

Всем известная знаменитая шутка: «Что тяжелее — килограмм ваты или килограмм гвоздей?» очень точно характеризует понятие плотности тела. Почему разные предметы, имея одинаковый объём, различаются по весу? Потому что они состоят из различных веществ и имеют разную плотность. В системе измерений данную величину принято измерять в кг/м³, но также возможно использование и других единиц: кг/л, г/см³.

Видео о плотности тела

Какие факторы влияют на плотность тела?

Плотность одних и тех же тел зависит от давления и температуры. Как правило, при высоком давлении молекулы утрамбованы плотнее, и, соответственно, вещество имеет бо́льшую плотность. Обычно при повышении температуры расстояние между молекулами увеличивается, что приводит к уменьшению плотности. Бывают случаи, когда такая зависимость имеет обратное значение. Так, например, плотность воды меньше плотности льда, несмотря на то что лёд имеет более низкую температуру. Причина такого явления — молекулярная структура льда. Часто вещество, переходя из жидкого в твёрдое состояние, изменяет свою молекулярную структуру таким образом, что расстояние между молекулами сокращается, и, соответственно, плотность становится больше. Когда образуется лёд, расстояние между молекулами и их объём становятся больше, а плотность — меньше. Поэтому в зимнее время, если забыть слить с труб воду, она замёрзнет, в результате чего труба разорвётся.

На плотность воды влияют и примеси, которые в ней находятся. Так, например, у морской воды плотность больше, чем у пресной. Если налить в сосуд солёную воду, а сверху — пресную, то последняя будет «плавать» на поверхности морской воды. Поскольку визуально данное явление увидеть сложно, то для эксперимента можно заполнить резиновый шар пресной водой и поместить его в солёную. Шар будет плавать на её поверхности. Можно сказать, что человеческое тело также представляет собой оболочку, наполненную пресной водой, поскольку, как известно, оно состоит из воды примерно на 50-75%. Поэтому держаться на поверхности солёной воды гораздо легче, чем пресной. И чем больше концентрация соли в воде, тем более она плотная.

Как рассчитать плотность тела?

Расчет плотности тела производится по следующей формуле:

К примеру, вода имеет плотность 1000 кг/м³, а лёд — 900 кг/м³. Поскольку лёд имеет меньшую массу по сравнению с водой, то зимой на водоёме он всегда находится на поверхности воды. В данном случае можно определить, что, если плотность льда равняется 900 кг/м³, значит, ледяной куб со стороной 1 м будет весить 900 кг.

Для того чтобы рассчитать плотность, необходимо знать его объём и массу. Это значит, что вещество можно взвесить, измерить, и на основании полученных данных вычислить плотность по формуле. Поскольку плотность измеряется в кг/л или в г/см³, то иногда приходится пересчитывать одни величины в другие. Делается это очень просто:

  • 1 грамм = 0,001 кг, а 1 см³ = 0,000001 м³, и соответственно:
  • 1 г/(см)^3 =1000кг/м^3

Иногда необходимо рассчитать плотность газообразного вещества. Для этого используется та же формула для расчета плотности тела, но несколько в другом виде:

где М — молярная масса газа, Vm— молярный объём (равен приблизительно 22,4 л/моль).

Масса всех тел всегда зависит не только от их размеров, но и от веществ, из которых они состоят. Так, тела, имеющие одинаковый объём, но состоящие из различных веществ, будут отличаться друг от друга своими массами. И наоборот, если у тел массы одинаковы, но состоят они из разных веществ, то их объёмы также будут отличаться. Например:

  • Куб из железа с рёбрами по 10 см весит 7,8 кг.
  • Куб из алюминия такого же размера весит 2,7 кг.
  • Ледяной куб с аналогичными размерами весит 0,9 кг

Расчет массы тела и объёма по плотности

Часто возникает необходимость рассчитать массу или объём тела. При этом следует знать, что каждое тело имеет постоянную определённую плотность. К примеру, вода имеет плотность 1000 кг/м³, этиловый спирт — 800 кг/м³.

Поскольку величины постоянные, то для каждого вещества существуют специальные таблицы, которыми пользуются при расчетах.

Исходя из основной формулы определения плотности тела, можно легко рассчитать и его объём или массу:

Для примера можно решить простые задачи:

Задача № 1

Необходимо определить массу детали, выполненной из стали, если известно, что её объём составляет 120 см³.

Для того чтобы вычислить массу, требуется знать объём и плотность вещества. По условию задачи объём известен, а плотность необходимо найти по таблице (плотность стали = 7,8 г/см³). Тогда расчет массы тела по его плотности и объёму будет иметь следующий вид:

Задача № 2

Требуется рассчитать объём бутылки подсолнечного масла, если известно, что её масса составляет 930 г.

Для того чтобы определить объём, необходимо знать массу и плотность. Масса известна, а плотность нужно найти по таблице (плотность подсолнечного масла = 0.93 г/см³). Тогда:

Расчет массы и объёма тела по плотности выполняется при помощи следующих таблиц:

Плотность воды

  • Если плотность вещества больше, чем плотность воды, то оно будет полностью погружаться в воду. И наоборот, предметы, сделанные из материала, плотность которого ниже плотности воды, будут плавать на её поверхности. Примером данного правила является лёд, плотность которого меньше плотности воды. Поэтому кусочек льда, брошенный в воду или другой напиток, сделанный из воды, всплывёт на поверхность.
  • В практической жизни эти свойства веществ часто используются человеком. К примеру, конструируя корпуса судов, инженеры используют материалы, плотность которых выше, чем плотность воды. Поскольку таким материалам свойственно тонуть в воде, то в корпусах суден необходимо создавать полости с воздухом — ведь его плотность значительно ниже плотности воды.
  • В другом примере, когда требуется, чтобы предмет погружался в воду, необходимо выбирать материалы с плотностью выше, чем плотность воды. К примеру, чтобы лёгкая наживка для рыб во время рыбалки погрузилась в воду на достаточную глубину, рыболов привязывает к леске грузило, сделанное из материала высокой плотности. Обычно в качестве грузила используется свинец.
  • Плотность масла, жира, нефти меньше, чем плотность воды, поэтому, если их пролить в воду, они будут плавать на её поверхности. Это свойство очень помогает в ситуациях, когда в морях или океанах при транспортировке нефти она проливается в воду. Благодаря тому, что пролитая нефть не смешивается с водой и плавает на её поверхности, уже было предотвращено множество экологических катастроф, поскольку вода была быстро очищена от вредного для природы вещества.
  • В кулинарии свойство жира всплывать на поверхность воды помогает эффективно удалять его излишки из ёмкости с блюдом. В супе, охлаждённом в холодильнике, жир застывает, что позволяет очень легко удалить его с поверхности. Это свойство жира помогает уменьшить количество калорий и холестерина в еде.
  • Правило о плотности жидких веществ хорошо известно профессиональным барменам. При приготовлении многослойных коктейлей используются жидкости с разными плотностями. Для этого жидкость, обладающую меньшей плотностью, необходимо аккуратно налить на более плотную жидкость.
  • Иногда низкая плотность жира может, наоборот, мешать. Так, например, в процессе приготовления холодных десертов или фруктовых коктейлей жирные продукты очень трудно смешивать с водой, на поверхности которой может образоваться отдельный слой из жира, ухудшив при этом внешний вид и вкус блюда.

Видео о расчете массы и объема тела по плотности

Метод вытеснения жидкости

Как уже известно, для определения плотности тела необходимо знать две величины — объём и массу. Если масса легко определяется с помощью обычных весов, то как посчитать плотность тела, если неизвестен его объём, может показаться довольно сложной задачей.

Но для определения объёма тела также существует очень простой метод, изобретённый Архимедом:

  • Необходимо налить воду в мерный стакан и зафиксировать количество налитой воды.
  • Затем следует полностью погрузить в эту воду предмет, объём которого требуется определить.
  • Из количества воды, которая находилась в сосуде изначально, до погружения в неё тела, необходимо вычесть то количество воды, которое осталось после его погружения.

Конечно, такой метод нельзя использовать для вычисления объёма фотоаппарата или других предметов, которые испортятся от контакта с водой. Следует помнить, что данный метод не будет работать при погружении в воду тел, которые склонны её поглощать (например, плюшевый медвежонок).

В какой сфере жизни Вам пригодились знания о плотности тела? Расскажите об этом в комментариях.

www.rutvet.ru

Калькулятор массы

Плотность  материалов
Наименование Плотность
ρ, кг/м3
Черные металлы
Сталь 10 ГОСТ 1050-88 7856
Сталь 20 ГОСТ 1050-88 7859
Сталь 40 ГОСТ 1050-88 7850
Сталь 60 ГОСТ 1050-88 7800
С235-С375 ГОСТ 27772-88 7850
Ст3пс ГОСТ 380-2005 7850
Чугун ковкий КЧ 70-2 ГОСТ 1215-79 7000
Чугун высокопрочный ВЧ35 ГОСТ 7293-85 7200
Чугун серый СЧ10 ГОСТ 1412-85 6800
Чугун серый СЧ20 ГОСТ 1412-85 7100
Чугун серый СЧ30 ГОСТ 1412-85 7300
Алюминий и сплавы алюминиевые
Силумин АК12ж ГОСТ 1583-93 2700
Сплав АК12 ГОСТ 1583-93 2710
Сплав АК5М ГОСТ 1583-93 2640
Сплав АК7 ГОСТ 1583-93 2700
Сплав АО9-1 ГОСТ 14113-78 2700
Магний и сплавы магниевые
Сплав ВМЛ9 1850
Сплав ВМЛ5 1890
Сплав МЛ10…МЛ19 ГОСТ 2856-79 1810
Баббиты оловянные и свинцовые
Б83 ГОСТ 1320-74 7380
Б87 ГОСТ 1320-74 7300
БН ГОСТ 1320-74 9550
Медь и медные сплавы
Бронза оловянная БрО10C10 8800
Бронза оловянная БрО19 8600
Бронза оловянная БрОC10-10 9100
Бронза оловянная БрОA10-1 8750
Бронза БрА10Ж3Мч2 ГОСТ 493-79 8200
Бронза БрА9Ж3Л ГОСТ 493-79 8200
Бронза БрМц5 ГОСТ 18175-78 8600
Латунь Л60 ГОСТ 15527-2004 8800
Латунь ЛА ГОСТ 1020-97 8500
Медь М0, М1, М2, М3 ГОСТ 859-2001 8940
Медь МСр1 ГОСТ 16130-90 8900
Титан и титановые сплавы
ВТ1-0 ГОСТ 19807-91 4500
ВТ14 ГОСТ 19807-91 4500
ВТ20Л ГОСТ 19807-91 4470
Фторопласты
Ф-4 ГОСТ 10007-80 Е 2100
Фторопласт — 1 ГОСТ 13744-87 1400
Фторопласт — 2 ГОСТ 13744-87 1700
Фторопласт — 3 ГОСТ 13744-87 2710
Фторопласт — 4Д ГОСТ 14906-77 2150
Термопласты
Дакрил-2М ТУ 2216-265-057 57 593-2000 1190
Полиметилметакрилат ЛПТ ТУ 6-05-952-74 1180
Полиметилметакрилат суспензионный ЛСОМ ОСТ 6-01-67-72 1190
Винипласт УВ-10 ТУ 6-01-737-72 1450
Поливинилхлоридный пластикат ГОСТ 5960-72 1400
Полиамид ПА6 блочный Б ТУ 6-05-988-87 1150
Полиамид ПА66 литьевой ОСТ 6-06-369-74 1140
Капролон В ТУ 6-05-988 1150
Капролон ТУ 6-06-309-70 1130
Поликарбонат 1200
Полипропилен ГОСТ 26996-86 900
Полиэтилен СД 960
Лавсан литьевой ТУ 6-05-830-76 1320
Лавсан ЛС-1 ТУ 6-05-830-76 1530
Стиролпласт АБС 0809Т ТУ 2214-019-002 03521-96 1050
Полистирол блочный ГОСТ 20282-86 1050
Сополимер стирола МСН ГОСТ 12271-76 1060
Полистирол ударопрочный УПС-0505 ГОСТ 28250-89 1060
Стеклопластик ВПС-8 1900
Стеклотекстолит конструкционный КАСТ-В ГОСТ 10292-74 1850
Винилискожа-НТ ГОСТ 10438-78 1440
Резина 6Ж ТУ 38-005-1166-98 1050
Резина ВР-10 ТР 18-962 1800
Стекло листовое ГОСТ 111-2001 2500
Стекло органическое техническое ТОСН ГОСТ 17622-72 1180
Прочие металлы
Вольфрам ВА ГОСТ 18903-73 19300
Вольфрам ВТ-7 ГОСТ 18903-73 19300
Золото Зл 99,9 ГОСТ 6835-2002 19300
Индий ИНО ГОСТ 10297-94 7300
Кадмий КдО ГОСТ 1467-93 8640
Олово О1пч ГОСТ 860-75 7300
Паладий Пд 99,8 ГОСТ 13462-79 12160
Платина Пд 99,8 ГОСТ 13498-79 21450
Свинец С0 ГОСТ 3778-98 11400
Серебро 99,9 ГОСТ 6836-2002 11500
Цинк Ц1 ГОСТ 3640-94 7130
Прочие материалы
Древесина, пробка 480
Древесина, лиственница 660
Древесина, липа 530
Древесина, ель 450
Древесина, сосна 520
Древесина, береза 650
Древесина, бук 690
Бумага 700-1200
Резина 900-2000
Кирпич 1400-2100
Фарфор 2300
Бетон 2000-2200
Цемент 2800-3000

azmen.a-idea.ru

Как рассчитать вес (масу) трубы и другого металлопроката

При отсутствии возможности для непосредственного взвешивания, массу металлолома можно установить и иными путями. Наиболее точный результат даст расчёт, но не следует пренебрегать и другими возможностями.

Итак, чтобы не грузить читателей лишними формулами, которые все же будут, но ниже, обозначим сразу формулы для расчета самых популярных изделий из стального проката и трубы — трубопроката. Здесь вы не найдете онлайн-калькулятора для расчета веса, лишь формулы, запомнив, которые 1 раз Вам больше не придется пользоваться специальными калькуляторами. Например, при демонтаже металлоконструкций или дымовой трубы, не всегда есть есть под рукой компьютер, интернет или справочник, а конструкции сварены все из сортового проката вот здесь и выручат наши формулы!

Формула, чтобы рассчитать вес трубы

M=(D-s)*s*0,02466

, где

  • M — масса одного погонного метра трубы, кг;
  • D — наружный диаметр рассчитываемой трубы, мм;
  • s — толщина стенки трубы, мм;
  • 0,02466 —коэффициент при плотности стали  равной 7,850 г/см3.

Эта формула очень точна. Вы можете рассчитать вес трубы и сверить расчетную массу с теоретической в любом сортаменте и значение по формуле будет точнее! Также можно вычислить

Рассчитываем вес листа металла

M=S*7,85

, где

  • M — масса стального листа, кг;
  • S — площадь вычисляемого листа, в метрах квадратных;
  • 7,85 — вес листа толщиной 1 мм и площадью 1 метр квадратный, в килограммах

Так можно рассчитать вес листа металла любого размера, у которого Вы можете вычислить площадь. Точность расчетов по такой формуле выше, чем теоретическая масса в справочниках, т.к. в сортаменте при расчете массы металла программа округляет значения. Ну а как узнать площадь листа (любой формы — квадрата, прямоугольника, параллелепипеда, трапеции, ромба и т.д. ) — должен знать каждый человек, окончивший среднюю школу.

Как рассчитать вес арматуры и прутка

Для круга, прутка, гладкой арматуры формула для расчета массы будет такой:

M=(0,02466*D2)/4

, где

  • M — масса 1 погонного метра круга/арматуры/прутка, кг;
  • D — диаметр круга;
  • 0,02466 —коэффициент при плотности стали  равной 7,850 г/см3

Для расчета веса рифленой арматуры (А2, А3) можно и нужно использовать эту же формулу! Расхождений с теоретической массой не будет, не смотря на различные рисунки поперечных сечений.

Такую кучу металлолома, конечно, без взвешивания нереально посчитать по формулам

Общие подходы или немного скучной теории

Для определения веса любого предмета достаточно умножить его объём на удельный вес. Если с удельным весом всё более-менее понятно, то объём определить труднее (если не рассматривать такие простые формы как куб).  Наиболее общим принципом расчёта объёма считается принцип Гюльдена, когда площадь поперечного сечения какого-либо предмета умножают на его высоту. С высотой металлоконструкции проблем также обычно не возникает, её легко (либо почти легко) замерить непосредственно, особенно, если сечение по высоте постоянно. Так можно поступить в отношении стальных труб любого сечения и профиля, двутавров, швеллеров, уголков и т.д. Метод определения массы металлических предметов сложных и непостоянных по высоте форм рассмотрим позднее.

Объём пирамиды

Пирамидальные окончания наверший стальных кованых заборов, дефлекторов и прочих частей металлоконструкций встречаются часто. Объём пирамиды легко рассчитать по формуле:

, где:

  •  В – площадь основания пирамиды;
  • Н – высота пирамиды.

Поскольку в технике основаниями пирамиды могут служить квадрат, прямоугольник или треугольник, то проблема решается весьма просто.

Объём усечённой пирамиды

Форму усечённой пирамиды имеют ограждающие колпаки, защитные задвижки и дверцы. В таких ситуациях используется зависимость:

, где:

  • h – высота усечённой пирамиды;
  • F – площадь её большего основания;
  • f – площадь меньшего основания.

Если пирамидальная часть конструкции, сданной на металлолом, несколько деформирована, то недостающий объём добавляют или удаляют с каждой из сторон.

Объём клина и обелиска

Клин в технике часто является пятигранником, в основании которого лежит прямоугольник, а боковые грани являются равнобедренными треугольниками или трапециями. Формула для расчёта объёма клина имеет вид:

, где:

  • а – сторона основания подножия клина;
  • а1 – ширина верхушки клина;
  • b – толщина клина;
  • h —  высота клина.

Обелиск — это шестигранник, основанием которого являются прямоугольники, которые расположены в параллельных плоскостях. Противоположные грани при этом симметрично наклонены к основанию обелиска. Объём данного геометрического тела:

, где:

  • а и b – размеры длины и ширины большего основания обелиска;
  • а а1 и b1 – меньшего основания обелиска;
  • h – высота обелиска.

Объём  прутка и трубы

Для расчёта всех геометрических сечений, в основе которых лежит круг, не обойтись без параметра π – 3,14 (более высокая точность для металлолома и не требуется). Тогда для цилиндра имеем:

, где:

  • R – радиус прутка;
  • H – длина/высота прутка.

Для трубы (полого цилиндра) объём рассчитывается по формуле:

, где

r – внутренний радиус трубы.

Объём конуса и усечённого конуса

Геометрические формы конуса и усечённого конуса широко используются при конструировании деталей механизмов и машин. Объём конуса равен:

, где

  • R – радиус основания конуса;
  • Н – высота конуса.

Для вычисления объёма усечённого конуса используют более сложную зависимость:

, где

R – радиус меньшего основания конуса.

Объём сферических элементов металлоконструкций

Кроме собственно сферы, в практике приходится считать также объём шарового сегмента и сектора. Используются следующие зависимости:

Объёмы прокатных профилей

Чаще всего приходится определять вес тавров, двутавров, швеллеров, уголков. Для этого используются следующие зависимости:

Для тавра

,где b и b1 – соответственно ширина полки и стенки тавра; h и  h1 – толщина основания и полки тавра; Н – высота таврового фрагмента лома;

Для двутавровой балки

,где Н – высота/длина двутаврового элемента; а – толщина стенки двутавра; с и с1 – толщина полки двутавра в основании и по торцу соответственно;

Для уголка

,где Н – длина уголка; l1 –  толщина уголка; h1 и  h2 соответственно – ширина каждой из полок.

Как установить массу конструкции особо сложной формы

Решение этой задачи возможно двумя способами. Согласно первому из них устанавливают значение так называемого коэффициента заполнения (способ применяется для габаритных узлов, разборка которых либо затруднительна, либо вовсе невозможна). Например, для ползунов кривошипных машин коэффициент заполнения принимают равным 0,3…0,35. Тогда считают массу узла G в предположении, что она сплошная, а затем умножают полученный результат на коэффициент заполнения.

Примерно такую же точность даёт эмпирическая формула Нистратова:

, где  Р – номинальное усилие пресса в тоннах.

Оригинально можно установить массу небольших неразъёмных конструкций по объёму вытесненной ими воды. Для этого в тарированную ёмкость наливают до краёв воду. Устанавливают ёмкость в другую со значительно большим объёмом, а затем в первую ёмкость помещают данную конструкцию. Вытесненный ею объём воды взвешивают. Этот объём и будет равен объёму конструкции.

xlom.ru

Расчет веса металла — как вычислить с помощью калькулятора?

Очень часто, имея в наличии только габариты проката, необходимо выполнить расчет удельного веса листового металла по размерам, и тогда возникает нужда в простых способах вычисления, которыми являются таблицы и формулы.

1 Чем усложняется расчет веса металла?

Кузнечное искусство давно отошло на второй план, и сегодня основным источником стальных, чугунных или медных изделий стала металлургия. Продукция проходит различные виды обработки, претерпевает изменения на всевозможных станках, однако следует разделять способы обработки. Прежде всего, это холодный и горячий прокат. Разница между ними огромна, поскольку воздействие на металл при высоких или низких температурных режимах дает определенные отличия в результатах. В частности, речь идет о геометрии проката.

Техпроцесс при обоих видах обработки один и тот же – заготовка размещается между двумя вращающимися в разных направлениях валами, которыми и прессуется до нужного состояния профиля. Ввиду того, что холодный прокат не связан с продолжительным нагревом металла до высоких температур, и обработка осуществляется в большей степени за счет механической нагрузки, а не пластичности материала, лист получается ровнее. Горячий прокат, наоборот, изготавливается при постоянной термообработке, обычно это твердые сплавы, имеющие незначительную пластичность.

Из-за непрерывного нагрева поверхность листов окисляется, рекристаллизация происходит неравномерно, поэтому разные участки горячекатаного изделия могут быть разной толщины.

Таким образом, становится очевидным, что точность расчетов второго типа металлопрофилей будет довольно относительной. Ведь погрешности в толщине вынуждают принять какую-то среднюю, приблизительную величину для этого значения. А безукоризненная геометрия листа, полученного при холодном прокате, позволит вычислить его вес с достаточной степенью точности. С другой стороны, масса горячекатаных изделий зачастую зависит от типа и калибра профиля, что позволяет не принимать во внимание небольшие отклонения при вычислениях. А значит, можно смело начинать вычисления или использовать готовый калькулятор расчета веса листа металла онлайн.

2 Как вычислить массу профиля прямоугольного сечения?

Наиболее распространенные типы профилей, с которыми приходится сталкиваться в быту – это, в первую очередь, металлические изделия круглого или прямоугольного сечения. К первым можно отнести прутки, арматуру, трубы, а второй тип – это полые профили с квадратным сечением, металлические балки, и даже обычный катаный лист входит в эту же категорию. Проще всего рассчитать изделия с прямоугольным профилем, поэтому начнем ознакомление с вычислением именно такого типа продуктов проката.

Рекомендуем ознакомиться

Формула для определения массы любого металлического изделия, независимо от его сечения: m = pV, где p – плотность, а V – объем. Те, кто знаком с химией, знают: сколько существует химических элементов, столько же и соответствующих им плотностей. Следовательно, каждому металлу или сплаву соответствует определенная, характерная ему величина этого значения, которую можно узнать в ГОСТе. А вот объем надо высчитывать, причем исходя из формы профиля, для чего подключаются знания геометрии.

Сначала узнаем площадь сечения: для листа – перемножая толщину и ширину, для трубы квадратного сечения – складываем величины сторон и умножаем на толщину стенки. Затем умножаем результат на длину изделия. Таким образом, для листа у нас получается формула массы mЛ = ABLp, а вес квадратного профиля mКП = b2(A+B)Lp, где A и B – ширина сторон профиля, b – толщина стенки изделия, L – длина, а p – плотность металла.

3 Определяем вес профиля круглого сечения

Очень часто для строительных работ приходится закупать пруток, арматуру и, конечно, трубы, без которых невозможно обеспечить снабжение дома холодной и горячей водой. Но предварительно нужно рассчитать массу металлического изделия, чтобы правильно организовать транспортировку.

Если вы приобретаете пруток или арматуру, все довольно просто, берем все ту же общую формулу для определения массы профиля m = pV, и все, что нам остается сделать – это найти объем.

Начинаем с вычисления площади сечения, которое, впрочем, отличается от расчетов для квадратного профиля. В данном случае формула будет выглядеть так: S = πD2/4. Результат умножаем на длину и получаем объем V = SL. В итоге m = (πD2/4)Lp. Так можно рассчитать любой вес стального круга: хоть проволоки, хоть арматуры. Массу последней можно узнать и из таблицы:

Диаметр арматуры

Вес 1 метра арматуры

Погонных метров в тонне

d 6

0,222

4504,5

d 8

0,395

2531,65

d 10

0,617

1620,75

d 12

0,888

1126,13

d 14

1,21

826,45

d 16

1,58

632,91

d 18

2

500

d 20

2,47

404,86

d 22

2,98

335,57

d 25

3,85

259,74

d 28

4,83

207,04

d 32

6,31

158,48

d 36

7,99

125,16

d 40

9,87

101,32

d 45

12,48

80,13

d 50

15,41

64,89

d 55

18,65

53,62

d 60

22,19

45,07

d 70

30,21

33,1

d 80

39,46

25,34

Другое дело, если вам нужно рассчитать трубу круглого профиля. Здесь дело придется иметь уже с внутренним и внешним диаметром, а также с толщиной стенки. В основе всего будет лежать все та же формула массы, определяемой по произведению объема и плотности. Объем же, как вы помните, можно найти, перемножив площадь сечения и длину изделия.

Второе значение определяется путем простейших измерений, а первое, то есть площадь сечения, находим по формуле S = π(D2 — d2)/4. Здесь D – внешний диаметр, а d – внутренний диаметр, которые мы определяем по формуле d = D — 2b, где b – толщина стенки профиля. В итоге формула массы трубы с круглым сечением будет выглядеть следующим образом: m = (π(D2 — (D — 2b)2)/4)Lp.

4 Как узнать массу шестигранного профиля?

Может случиться так, что вам придется столкнуться с профилем нестандартной формы сечения. К примеру, мы привыкли видеть на строительной площадке обычную круглую арматуру. Но иногда возникает необходимость в шестигранном прутке, который, надо отметить, используется крайне редко, ввиду специфической формы и, зачастую, как заготовка для производства различных изделий.
В частности, многие могут помнить, как в школе на уроках труда из коротких срезов этого прутка изготавливались гайки. Проще всего найти массу такого профиля, зная его размер (номер), с помощью следующей таблицы:

размер

вес (кг)

размер

вес (кг)

размер

вес (кг)

размер

вес (кг)

№10

0,68

№20

2,72

№32

6,96

№48

15,66

№11

0,82

№21

3

№34

7,86

№50

16,98

№12

0,98

№22

3,29

№36

8,81

№52

18,4

№13

11,15

№24

3,92

№38

9,82

№55

20,58

№14

1,33

№25

4,25

№40

10,86

№57

22,35

№15

1,53

№26

4,59

№41

11,54

№60

24,5

№16

1,74

№27

4,96

№42

11,99

№17

1,96

№28

5,33

№43

12,71

№18

2,2

№29

5,27

№46

14,53

№19

2,45

№30

6,12

№47

14,95

Размер или, иначе говоря, номер шестигранника определяется по диаметру окружности, вписанной в сечение профиля, имеющее форму шестиугольника, то есть это расстояние между его противоположными сторонами. Готовых данных может не оказаться под рукой, и на этот случай лучше всего знать формулу, с помощью которой можно достаточно легко рассчитать массу шестигранного прутка. Как всегда, за основу принимаем m = pV.

Для получения объема нам нужно узнать площадь сечения, которое имеет форму шестиугольника. Именно здесь мы сталкиваемся с основной сложностью, поскольку нужно будет высчитывать корни. Формула имеет следующий вид S = (3√3 . A2)/2, где А – ширина грани. Остается результат умножить на длину, и мы получаем объем, произведение которого с плотностью металла и даст нам массу, что в итоге будет выглядеть как m = ((3√3 . A2)/2)Lp.

Подобрать и приобрести необходимый металлопрокат можно на metalloprokat.navigator-beton.ru

tutmet.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *